Math, asked by Anonymous, 6 months ago

the length breadth and height are in ratio 3:1:2. the surface area of cuboid is 1408cm find length breadth and height ​

Answers

Answered by MoodyCloud
17
  • Length of cuboid is 24 cm.
  • Breadth of cuboid is 8 cm.
  • Height of cuboid is 16 cm.

Step-by-step explanation:

Given:-

  • Length, Breadth and Height of cuboid are in ratio of 3:1:2.
  • Surface area of cuboid is 1408 cm².

To find:-

  • Length of cuboid.
  • Breadth of cuboid.
  • Height of cuboid.

Solution:-

Let, Length of cuboid be 3x.

Breadth of cuboid be 1x or x.

And Height of cuboid be 2x.

Surface area of cuboid = 2(lb + bh + lh)

  • Here, l, b and h are length, breadth and height of cuboid.

Putting l, b ,h and surface area in formula:

 \longrightarrow \sf 1408 = 2 \times [(3x \times x) + (x \times 2x)+(2x \times 3x)]

 \longrightarrow \sf 1408 = 2 \times (3x^{2} - 2x^{2} + 6x^{2})

 \longrightarrow \sf 1408 = 6x^{2} + 4x^{2} + 12x^{2}

 \longrightarrow \sf 1408 = 22x^{2}

 \longrightarrow \sf \cfrac{1408}{22} = x^{2}

 \longrightarrow  \sf 64 = x^{2}

 \longrightarrow \sf \sqrt{64} = x

 \longrightarrow \sf 8 = x

Or, x = 8

Verification:-

 \longrightarrow \sf 1408 = 2 \times [(3x \times x) + (x \times 2x)+(2x \times 3x)]

 \longrightarrow \sf 1408 = 2 \times (3x^{2} - 2x^{2} + 6x^{2})

  • Put x = 8

 \longrightarrow \sf 1408 = 2 \times (3 \times (8)^{2} + 2 \times (8)^{2} + 6 \times (8)^{2}

 \longrightarrow \sf 1408 = 2 \times (3 \times 64 + 2 \times 64 + 6 \times 64

 \longrightarrow \sf 1408 = 2 \times (192 + 128 + 384)

 \longrightarrow \sf 1408 = 384 + 256 + 768

 \longrightarrow \sf 1408 = 1408

Hence, Verified!!

Length = 3x = 3×8 = 24 cm.

Breadth = x = 8 cm.

Height = 2x = 2×8 = 16 cm.

Answered by iTzShInNy
16

Answer:

 \large \bigstar  \bf {\underbrace{ \color{navy}{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \: Question- \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }} }\bigstar

The length, breadth and height are in ratio 3:1:2.

The surface area of cuboid is 1408 cm².

Find length ,breadth and height .

 \\  \\

 \large \bigstar  \bf {\underbrace{ \color{navy}{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \: concept- \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }} }\bigstar

As per provided in the given Question ,

The length,breadth and height of a cuboid are in ratio 3:1:2.

The surface area of cuboid is given 1408 cm².

 \\  \\

 \large \bigstar  \bf {\underbrace{ \color{navy}{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \: To\: find- \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }} }\bigstar

  • Length (l)
  • Breadth (b)
  • Height (h)

 \huge \underbrace{ }

Of a Cuboid

 \\  \\

 \large \bigstar  \bf {\underbrace{ \color{navy}{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \: Formula - \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }} }\bigstar

 \large \mid{ \underbrace{\overbrace \bold \color{lime}{2(lb + bh + lh)}}} \mid

 \\  \\

 \large \bigstar  \bf {\underbrace{ \color{navy}{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \: Let- \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }} }\bigstar

  • The length of the cuboid be = 3x
  • The breadth of the cuboid be = x
  • The height of the cuboid be = 2x

 \\  \\

 \large \bigstar  \bf {\underbrace{ \color{navy}{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \: Solution- \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }} }\bigstar

Let us use the formula,

  \large \rm  \red2(lb + bh + hl) \\ </p><p>\rm\green (as \: the \: given

 \rm \green{surface \: area \: is \: 1408 )\: so}

  \large\rm \purple{2(lb + bh + hl) = 1408} \\  \large  \rm\bold { =  &gt; 2(3x \times x + x \times 2x + 3x \times 2x )= 1408} \\  \large  \rm\bold{  =  &gt; 2(3 {x}^{2}  + 2 {x}^{2}  + 6 {x}^{2} = 1408 } \\  \large  \rm\bold{ =  &gt; 6x {}^{2}  + 4 {x}^{2}  + 12 {x}^{2}  = 1408 }\\  \large \rm \bold{ =  &gt; 22 {x}^{2} = 1408 }

 \large \rm \bold{ =  &gt;  {x}^{2}  =   \cancel\frac{1408}{22} } \\ \large \rm\bold  {=  &gt; x {}^{2}  = 64} \\  \large \rm \bold{ =  &gt; x =  \sqrt{64} } \\  \large \rm \bold{ =  &gt; x = 8}

 \large \bigstar  \bf {\underbrace{ \color{navy}{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \: Therefore \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }} }\bigstar

 \large \rm \pink{length = 3x} \\  = 3 \times 8 \\  = 24cm \\  \\ \large \rm \blue{breadth = x }\\  = 8cm \\  \\ \large \rm \color{lime}{ height = 2x} \\ 2 \times 8 \\ 16cm \\  \\

So ,

  • the length is 24cm
  • the breadth is 8 cm
  • the height is 16cm

 \\  \\

 \large \bigstar  \bf {\underbrace{ \color{navy}{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \: additional\: information \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }} }\bigstar

  • The Cuboid is a three-dimensional figure
  • All are sides aren't equal
  • All the 6 faces are rectangle
  • The faces of the cuboid are parallel.

A cuboid has

  • 12 edges
  • 6 faces
  • 8 vertices.

 \\  \\

Similar questions