Math, asked by btssnowwpyyy, 6 months ago


The length, breadth and height of a box are
75 cm, 85 cm and 95 cm respectively. What
will be the greatest length of tape which can
measure the three dimensions of the box
exactly? ​

Answers

Answered by Anonymous
5

\huge{\mathbb{\red{ANSWER:-}}}

For a Cuboid Box :-

Given :-

\sf{length (L) = 75 \: cm}

\sf{breadth (b) = 85 \: cm}

\sf{height (h) = 95 \: cm}

To Find :-

\sf{The \: greatest \: length \: of  \: this \: cuboid \: box = ?}

Using Formula :-

\sf{Diagonal \: of \: Cuboid =\sqrt{L^{2} + b^{2} + h^{2}}}

Solution :-

On putting the values of length , breadth and height -

\sf{The \: greatest \: length \: of \: tape-}

\sf{D =\sqrt{(75)^{2} + (85)^{2} + (95)^{2}}}

\sf{D =\sqrt{5^{2}(15^{2} + 17^{2} + 19^{2})}}

\sf{D =5\sqrt{(15^{2} + 17^{2} + 19^{2})}}

\sf{D =5\sqrt{(225 + 289 + 361)}}

\sf{D =5\sqrt{(225 + 650)}}

\sf{D =5\sqrt{875}}

\sf{D =5\sqrt{25*35}}

\sf{D =5\times 5\sqrt{35}}

\sf{D =25\sqrt{35}}

\sf{D =25\times 5.92}

\sf{D = 25\times \dfrac{592}{100}}

\sf{D =\dfrac{592}{4}}

\sf{D = 148 \: cm}

As We got :-

\sf{We \: need \: 148 \: cm \: tape \: which \: can \: measure \: all}

\sf{the \: three \: dimensions \:  of \: the \: box \: exactly.}

Here ,

\sf{\sqrt{35}}

\sf{\sqrt{(36-1)}}

\sf{\sf\boxed{\sqrt{x-y}=\sqrt{x}-\dfrac{y}{2\sqrt{x}}}}

So ,

\sf{\sqrt{36} - \dfrac{1}{2\sqrt{36}}}

\sf{6 - \dfrac{1}{2\times 6}}

\sf{6 - \dfrac{1}{12}}

\sf{6 - 0.08333}

\sf{5.917}

\sf{5.92}

Similar questions