Math, asked by Anonymous, 2 months ago

The length, breadth and height of a cuboid are 15 cm, 12 cm and 4.5 cm respectively. The volume of this cuboid is :​​

Answers

Answered by sethrollins13
183

Given :

  • Length of a cuboid is 15 cm .
  • Breadth is 12 cm .
  • Height is 4.5 cm .

To Find :

  • Volume of Cuboid .

Solution :

\longmapsto\tt{Length(l)=15\:cm}

\longmapsto\tt{Breadth(b)=12\:cm}

\longmapsto\tt{Height(h)=4.5\:cm}

Using Formula :

\longmapsto\tt\boxed{Volume\:of\:Cuboid=l\times{b}\times{h}}

Putting Values :

\longmapsto\tt{15\times{12}\times{4.5}}

\longmapsto\tt{180\times{4.5}}

\longmapsto\tt\bf{810\:{cm}^{3}}

So , The Volume of the Cuboid is 810 cm³ .

____________________

  • Surface Area of Cuboid = 2(lb+bh+hl)
  • Volume of Cuboid =l × b × h
  • L.S.A of Cube = 4a²
  • T.S.A of Cube = 6a²
  • Volume of Cube = a³

Here :

  • l = length
  • b = breadth
  • h = height
  • a = side of cube

____________________

Answered by Anonymous
170

Given :-

  • Length = 15cm
  • Breadth = 12cm
  • Height = 4.5cm

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

To Find :-

  • Volume = ?

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Formula Used :-

{\red{\bigstar \:  \:  \:  \:  \:  \: {\orange{\underbrace{\underline{\green{\bf{Volume = Length  \times Breadth  \times Height}}}}}}}}

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Solution :-

Here :

Volume = ?

Length = 15cm

Breadth = 12cm

Height = 4.5cm

Volume of Cuboid :

{:{\longmapsto{\bf{Volume = Length \times  Breadth \times  Height}}}}

{:{\longmapsto{\bf{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:   \:  \:  \:  \:  15 \times 12 \times 4.5}}}}

{:{\longmapsto{\bf{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:   \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \: 180\times 4.5}}}}

{:{\red{\twoheadrightarrow}{\purple{\bf{\underline{\boxed{\bf{Volume = 810cm³}}}}}}}}

Hence :

{\large{\purple{\underline{\red{\underline{\pink{\pmb{\mathfrak{volume \: of \: given \: cube \: is \: 810 {cm}^{3} }}}}}}}}}.

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Similar questions