Math, asked by Mister360, 4 months ago

The length, breadth and height of a cuboid are 20 cm, 15 cm, 10 cm respectively. Find its
TSA

LSA

Volume

Answers

Answered by harshithsivakumar1
26

Answer:

TSA = 1300 cm²

LSA = 700 cm²

Volume = 3000 cm³

Step-by-step explanation:

TSA = 2(lb + bh + lh)

TSA = 2({20 cm * 15 cm} + {20 cm * 10 cm} + {15 cm * 10 cm})

TSA = 2*(300 cm² + 200 cm² + 150 cm²)

TSA = 600 cm² + 400 cm² + 300 cm²

TSA = 1300 cm²

LSA = 2*h*(l + b)

LSA = 2*10 cm*(20 cm + 15 cm)

LSA = 20 cm * 35 cm

LSA = 700 cm²

Volume = lbh

Volume = 20 cm * 15 cm * 10 cm

Volume = 3000 cm³

Hope this helps you.

Answered by kailashmannem
63

 \huge{\bf{\green{\mathfrak{Question:-}}}}

  • The length, breadth and height of a cuboid are 20 cm, 15 cm, 10 cm respectively.
  • Find its,
  • TSA
  • LSA
  • Volume

 \huge {\bf{\orange{\mathfrak{Answer:-}}}}

  •  \textsf{Length of the cuboid = 20 cm.}

  •  \textsf{Breadth of the cuboid = 15 cm.}

  •  \textsf{Height of the cuboid = 10 cm.}

  •  \boxed{\sf TSA\: of\: the\: cuboid \:= 2(lb\: + \:bh \:+ \:lh)\: units^{2}.}

  •  \sf 2(20 \: * \: 15 \: + \: 15 \: * \: 10 \: + \: 20 \: * \: 10)

  •  \sf 2(300 \: + \: 150 \: + \: 200)

  • \sf 2(650)

  • \boxed{\sf 1300\: cm^{2}.}

  •  \boxed{\sf LSA \:of\: the\: cuboid \:=\: 2h(l \:+\: b) \:units^{2}.}

  •  \sf 2 \: * \: 10(20 \: + \: 15)

  •  \sf 20(35)

  • \boxed{\sf 700\: cm^{2}.}

  •  \boxed{\sf Volume \:of \:the\: cuboid\: = \:lbh \:units^{3}.}

  •  \sf 20 \: * \: 15 \: * \: 10

  •  \boxed{\sf 3000 \: units^{3}.}

 \huge{\bf{\red{\mathfrak{Conclusion:-}}}}

  •  \boxed{\therefore{\sf{TSA\: of \:the\: cuboid\: = \:1300 \:cm^{2}.}}}

  •  \boxed{\therefore{\sf{LSA\: of\: the\: cuboid \:= \:700 \:cm^{2}.}}}

  •  \boxed{\therefore{\sf{Volume \:of\: the \:cuboid\: = \:3000 \:cm^{3}.}}}

 \huge{\bf{\purple{\mathfrak{Formulas \: used:-}}}}

  •  \sf TSA\: of\: the\: cuboid \:= 2(lb\: + \:bh \:+ \:lh)\: units^{2}.

  •  \sf LSA \:of\: the\: cuboid \:=\: 2h(l \:+\: b) \:units^{2}.

  •  \sf Volume \:of \:the\: cuboid\: = \:lbh \:units^{3}.

Similar questions