Math, asked by Edwinyoyo12345, 3 months ago

The length, breadth and height of a cuboid are in the ratio 7:6:5 . If the surface area of the cuboid is
1962cm², find it's dimensions. Also find the volume of the cuboid.​

Answers

Answered by LilBabe
144

\large \boxed{ǫᴜᴇsᴛɪᴏɴ}

The length, breadth and height of a cuboid are in the ratio 7:6:5 . If the surface area of the cuboid is 1926cm², find it's dimensions. Also find the volume of the cuboid.

Given:-

Surface area of a cuboid = 1926cm²

Ratio of dimensions = 7:6:5

Let,

The length of the cuboid be 7x

The breadth of a cuboid be 6x

The height of a cuboid be 5x

We know,

 \small\tt\boxed{Surface~area~ of ~a~ cuboid= 2(lb+lh+bh)}

From Question,

Surface area of cuboid = 1926

2(lb+lh+bh) = 1926

=>2[7x6x+7x5x+6x5x] = 1926

=>2[42x+35x+30x] = 1926

=> 2(107x). = 1926

=> 214x = 1926

=> x = \frac{1926}{214}

=> x = 9

Therefore, substituting the value of x

Length = 7 × 9 = 63cm

Breadth = 6 × 9 = 54cm

Height = 5 × 9 = 45cm

We have,

 \small\tt \boxed{Volume ~of ~a~ cuboid = l×b×height}

Volume= 63×54×45

= 153090cm³

 \tt\small \boxed{ғɪɴᴀʟ~ᴀɴsᴡᴇʀ}

Length = 7 × 9 = 63cm

Breadth = 6 × 9 = 54cm

Height = 5 × 9 = 45cm

Volume= 153090cm³

Answered by SuitableBoy
136

{\huge{\underbrace{\frak{Question:-}}}}

The Length , Breadth & Height of a Cuboid are in the ratio 7:6:5 . If the surface area of the Cuboid is 1926 cm² , find it's dimensions . Also find the volume of the Cuboid .

 \\

{\huge{\underbrace{\frak{Solution\checkmark}}}}

 \\

\frak{Given}\begin{cases}\sf{Given\;Figure\;is\;a\; \bf{Cuboid}}\\ \sf{Length:Breadth:Height=\bf{7:6:5}}\\ \sf{Total\;Surface\;Area=\bf{1926\;cm^2}}\end{cases}

 \\

\frak{To\;Find}\begin{cases}\sf{The\; Dimensions\;of\;the\;Cuboid}\\ \sf{Volume}\end{cases}

 \\

{\large{\underline{\textit{\textbf{Answer:–}}}}}

 \\

Let the ratios of 7x , 6x & 5x .

So ,

  • Length (l) = 7x
  • Breadth (b) = 6x
  • Height (h) = 5x

Now ,

Using the Formula for finding TSA

 \pink \star \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \boxed{ \sf{tsa = 2(lb + bh + lh)}}

 \rightarrow \rm \: 1926 \:  {cm}^{2}  = 2(7x \times 6x + 6x \times 5x + 5x \times 7x) \\

 \rightarrow \rm \: 1926 \:  {cm}^{2}  = 2(42x^2 + 30x^2 + 35x^2) \\

 \rightarrow \rm \: \cancel{1926}\:  {cm}^{2}  = \cancel2 \times \cancel{107}x^2

 \rightarrow \rm \:  {x}^{2}  = 9 \:  {cm}^{2}

 \rightarrow \:  \:  \:  \:  \:  \:  \:  \:  \:  \boxed{ \rm{x = 3 \: cm}}

So ,

 \bull \rm \: length = 7x = 7 \times 3 \: cm  \\  \underline{ \boxed{ \rm{ \pink{length = 21 \: cm}}}}

 \bull \rm \: breadth = 6x = 6 \times 3 \: cm \\  \underline{ \boxed{ \rm{ \green{breadth = 18 \: cm}}}}

 \bull \rm \: height = 5x = 5 \times 3 \: cm   \\  \underline{ \boxed{ \rm{ \purple{height = 15 \: cm}}}}

Dimensions : 21cm × 18cm × 15cm .

 \\

{\underline{\bf{\bigstar\; Finding\;Volume}}}

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \boxed{ \sf{volume = lbh}}

 \mapsto \rm \: volume = 21 \: cm \times 18 \: cm \times 15 \: cm \\

 \mapsto  \:  \:  \:  \:  \:  \: \underline{ \boxed{ \rm{ \blue{volume = 5670 \:  {cm}^{3}}}}}

Volume of the Cuboid = 5670 cm³ .

Similar questions