Math, asked by vishalmaurya4228, 2 months ago

The length, breadth and height of a room are 200 cm, 500 cm and 600 cm respectively.
Find the longest tape which can measure the three dimensions of the room exactly.

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given Dimensions of room,

  • Length = 200 cm

  • Breadth = 500 cm

  • Height = 600 cm

So,

Let assume that

  • The longest tape which can measure the three dimensions of the room exactly be 'x' cm

Thus,

\bf :\longmapsto\:x = HCF(200,  \: 500, \: 600)

Consider,

 \red{\rm :\longmapsto\:Prime \: Factorization \: of \: 200}

\begin{gathered}\begin{gathered}\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{2}}}&{\underline{\sf{\:\:200\:\:\:}}}\\ {\underline{\sf{2}}}& \underline{\sf{\:\:100\:\:\:}} \\\underline{\sf{2}}&\underline{\sf{\:\:50\: \:\:}}\\{\underline{\sf{5}}}&{\underline{\sf{\:\:25\:\:\:}}} \\ {\underline{\sf{5}}}&{\underline{\sf{\:\:5\:\:\:}}} \\ \underline{\sf{}}&{\sf{\:\:1\:\:\:}} \end{array}\end{gathered}\end{gathered}\end{gathered}

 \red{\rm :\longmapsto\:Prime \: Factorization \: of \: 200 =  {5}^{2} \times  {2}^{3}}

Consider,

 \red{\rm :\longmapsto\:Prime \: Factorization \: of \: 500}

\begin{gathered}\begin{gathered}\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{5}}}&{\underline{\sf{\:\:500\:\:\:}}}\\ {\underline{\sf{2}}}& \underline{\sf{\:\:100\:\:\:}} \\\underline{\sf{2}}&\underline{\sf{\:\:50\: \:\:}}\\{\underline{\sf{5}}}&{\underline{\sf{\:\:25\:\:\:}}} \\ {\underline{\sf{5}}}&{\underline{\sf{\:\:5\:\:\:}}} \\ \underline{\sf{}}&{\sf{\:\:1\:\:\:}} \end{array}\end{gathered}\end{gathered}\end{gathered}

 \red{\rm :\longmapsto\:Prime \: Factorization \: of \: 500 =  {2}^{2} \times  {5}^{3}}

Consider,

 \red{\rm :\longmapsto\:Prime \: Factorization \: of \: 600}

\begin{gathered}\begin{gathered}\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{2}}}&{\underline{\sf{\:\:600\:\:\:}}}\\ {\underline{\sf{2}}}& \underline{\sf{\:\:300\:\:\:}} \\\underline{\sf{2}}&\underline{\sf{\:\:150\: \:\:}}\\{\underline{\sf{5}}}&{\underline{\sf{\:\:75\:\:\:}}} \\{\underline{\sf{5}}}&{\underline{\sf{\:\:15\:\:\:}}}  \\ {\underline{\sf{3}}}&{\underline{\sf{\:\:3\:\:\:}}} \\ \underline{\sf{}}&{\sf{\:\:1\:\:\:}} \end{array}\end{gathered}\end{gathered}\end{gathered}

 \red{\rm :\longmapsto\:Prime \: Factorization \: of \: 600 =  {2}^{3} \times  {5}^{2} \times 3}

Thus,

We have now,

 \purple{\rm :\longmapsto\:Prime \: Factorization \: of \: 600 =  {2}^{3} \times  {5}^{2} \times 3}

 \purple{\rm :\longmapsto\:Prime \: Factorization \: of \: 500 =  {2}^{2} \times  {5}^{3}}

 \purple{\rm :\longmapsto\:Prime \: Factorization \: of \: 200 =  {5}^{2} \times  {2}^{3}}

Therefore,

\rm:\longmapsto\:x = HCF(200,  \: 500, \: 600)

\bf\implies \:x =  {2}^{2} \times  {5}^{2}  = 100 \: cm

Hence,

  • The longest tape which can measure the three dimensions of the room exactly is 100 cm or 1 m.

Additional Information :-

Let a and b are two natural numbers having hcf as x and lcm as y then

 \boxed{ \bf{ \: x \times y =a  \times b}}

 \boxed{ \bf{ x \leqslant (a,b)}}

 \boxed{ \bf{ y \geqslant (a,b)}}

 \boxed{ \bf{ y \: is \: always \: divisible \: by \: x}}

Similar questions