Math, asked by wagher448, 2 months ago

the length,breadth and hight of cuboid are in the ratio 5:4:2.if the total surface area is 1216 cm square,find the dimensions of the cuboid




Answers

Answered by MystícαIStαr
389

Given:

  • The length breadth and hight of cuboid are in the ratio 5: 4: 2.
  • If the total surface area is 1216cm²

To Find:

  • Dimensions of the cuboid

Solution:

Let,

  • Length of cuboid = 5x
  • Breadth of cuboid = 4x
  • Height of cuboid = 2x

TSA of cuboid = 2(lb + bh + hl)

➠ 1216 = 2(5x × 4x) + (4x × 2x) + (2x × 5x)

➠ 1216 = 2(20x² + 8x² + 10x²)

➠ 1216 = 2 (38x²)

➠ 1216 = 76x²

➠ x² = 1216/76

➠ x² = 16

➠ x = 4cm

Now, Dimensions of cubiod

  • Length of cuboid = 5x = 5 × 4 = 20cm
  • Breadth of cuboid = 4x = 4 × 4 = 16cm
  • Height of cuboid = 2x = 2 × 4 = 8cm

Answered by Anonymous
296

\frak{Given} = \begin{cases} &\sf{The\: length\:,breadth\: and\: height\: of\: cuboid \:are\: in\: the\: ratio\: 5\::\:4\::\:2\:.} \\\\\\\\\\ &\sf{The\:total\:surface\:area\:=\:1261cm^{2}}\end{cases}

To find:-  

  • The Dimensions of the cuboid .

Assume:-

  • The Length of the cuboid = 5x
  • The Breadth of the cuboid = 4x
  • The Heigth of the cuboid = 2x

Solution:-  

\qquad\sf{:\implies\:Total\:Surface\:Area\:_{(Cubiod)}\:=\:2\:(lb\:+\:bh\:+\:hl\:)}

\qquad\sf{:\implies\:1216\:=\:2\:(5x\:\times\:4x)\:+\:(4x\:\times\:2x)\:+\:(2x\:\times\:5x)}

\qquad\sf{:\implies\:1216\: = \:2\:(\:20x^{2} \:+\: 8x^{2}\: +\: 10x^{2})}

\qquad\sf{:\implies\:1216\: = \:2\:(\:38x^{2}\:)}

\qquad\sf{:\implies\:1216\: = \:76x^{2}}

\qquad\sf{:\implies\:x^{2}\:=\:\dfrac{1216}{76}}

\qquad\sf{:\implies\:x^{2}\:=\:16}

\qquad\sf{:\implies\:x\:=\:\sqrt{16}}

\qquad\sf{:\implies\:x\:=\:4cm}

Length:-

\qquad\sf{:\implies\:Length\:_{(Cubiod)}=5x\:}

\qquad\sf{:\implies\:Length\:_{(Cubiod)}=5\times\:4\:}

\qquad\sf{:\implies\:Length\:_{(Cubiod)}=20cm\:}

Breadth:-

\qquad\sf{:\implies\:Breadth\:_{(Cubiod)}=\:4x\:}

\qquad\sf{:\implies\:Breadth\:_{(Cubiod)}=\:4\:\times\:4\:}

\qquad\sf{:\implies\:Breadth\:_{(Cubiod)}=\:16cm\:}

Height:-

\qquad\sf{:\implies\:Height\:_{(Cubiod)}=\:2x\:}

\qquad\sf{:\implies\:Height\:_{(Cubiod)}=\:2\:\times\:4\:}

\qquad\sf{:\implies\:Height\:_{(Cubiod)}=\:8cm\:}

\color{red}{\underline{\sf{Therefore\:the\:dimensions\:of\:the\:couboid\:are\::-}}}

\qquad\sf{:\implies\:Length\:_{(Cuboid)}\:=\:20cm}

\qquad\sf{:\implies\:Breadth\:_{(Cuboid)}\:=\:16cm}

\qquad\sf{:\implies\:Height\:_{(Cuboid)}\:=\:8cm}

Similar questions