Physics, asked by aishu3659, 1 year ago

The length,breath and thickness of a rectangular sheet metal are 4.234m,1.005m and 2.01cm respectively give the area of the sheet to correct significant figures?

Answers

Answered by Anonymous
12

==============ⓢⓦⓘⓖⓨ

\huge\mathfrak\red{hello...frd\:swigy\:here}

==============ⓢⓦⓘⓖⓨ

Length of sheet, l = 4.234 m Breadth of sheet, b = 1.005 m Thickness of sheet, h = 2.01 cm = 0.0201 m

The given table lists the respective significant figures:

QUANTITY. 1) l. 2)b. 3) h

NUMBER. 1)4.234 2)1.005 3)2.01

SIGNIFICANT FIG. 1). 4 2). 4 3). 3

Hence, area and volume both must have least significant figures i.e., 3.

Surface area of the sheet

= 2 (l × b + b × h + h × l)

= 2(4.234 × 1.005 + 1.005 × 0.0201 + 0.0201 × 4.234)

= 2 (4.25517 + 0.02620 + 0.08510)

= 2 × 4.360 = 8.72 m2

Volume of the sheet

= l × b × h = 4.234 × 1.005 × 0.0201

= 0.0855 m3

This number has only 3 significant figures i.e., 8, 5, and 5.

I hope, this will help you

=======================

<marquee behaviour-move bigcolour-pink><h1>☺ThankYou✌</h1></marquee>

·.¸¸.·♩♪♫ ⓢⓦⓘⓖⓨ ♫♪♩·.¸¸.·

___________♦♦⭐♦ ♦___________

Answered by HèrøSk
67

Explanation:

Given:-

Length = 4.234 m

Breadth = 1.005 m

Height (thickness of sheet) = 2.01 cm = 0.0201 m

Solution:-

Area \:  =  \: 2(lb \:  +  \: bh \:  + hl) \\  =  2(4.234 \:  \times1.005 \:  + 1.005 \:   \times 0.201 \:  +  \: 0.201\: \times \: 4.234) \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  \: 2(4.25517 + 0.0202005 + 0.08551034) \\ =  (8.7209478) \\= 8.72 \:  {m}^{2}

Now,

Volume \:  =  \: l \:  \times  \: b \:  \times  \: h \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = 4.234 \:  \times 1.005 \:  \times  \: 0.0201 \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: = 0.0855 \: m ^{3}

Hence \: The \: area \: is \: 8.72 \: m ^{2}  \:  \: and \:  \\ Volume \: is \: 0.0855 {m}^{3}

Similar questions