Math, asked by muskanpreetkaur18, 7 months ago

the length (in metres) of the sides of a right angled triangle 2x-1,4x and 4x+1, x>0 find value of x and the area of triangle .​

Answers

Answered by Anonymous
5

Answer:

\sf{The \ value \ of \ x \ is \ 6 \ m \ and \ the}

\sf{area \ of \ the \ triangle \ is \ 132 \ m^{2}}

Given:

\sf{Sides \ of \ right \ angled \ triangle \ ate}

\sf{2x-1, \ 4x \ and \ 4x+1.}

To find:

\sf{The \ value \ of \ x \ and \ the \ area \ of \ the}

\sf{triangle.}

Solution:

\sf{By \ Pythagoras \ theorem}

\sf{(4x+1)^{2}=(2x-1)^{2}+(4x)^{2}}

\sf{\therefore{16x^{2}+8x+1=(2x^{2}-4x+1)+16x^{2}}}

\sf{\therefore{8x+1=2x^{2}-4x+1}}

\sf{\therefore{2x^{2}-12x=0}}

\sf{\therefore{x(2x-12)=0}}

\sf{\therefore{x=0 \ or \ 2x-12=0}}

\sf{But, \ x \ is \ bigger \ than \ zero.}

\sf{\therefore{x\neq \ 0}}

\sf{\therefore{2x-12=0}}

\sf{\therefore{2x=12}}

\sf{\therefore{x=\dfrac{12}{2}}}

\boxed{\sf{\therefore{x=6}}}

\sf{Area \ of \ right \ angled \ triangle,}

\sf{Here, \ base=2x-1}

\sf{Base=2(6)-1}

\sf{\therefore{Base(b)=12-1=11 \ m}}

\sf{Height=4x}

\sf{\therefore{Height (h)=4(6)=24 \ m}}

\boxed{\sf{Area \ of \ triangle=\dfrac{1}{2}\times \ h\times \ b}}

\sf{\therefore{A(\triangle)=\dfrac{1}{2}\times24\times11}}

\sf{\therefore{A(\triangle)=12\times11}}

\sf{\therefore{A(\triangle)=132 \ m^{2}}}

\sf\purple{\tt{\therefore{The \ value \ of \ x \ is \ 6 \ m \ and \ the}}}

\sf\purple{\tt{area \ of \ the \ triangle \ is \ 132 \ m^{2}}}

Similar questions