Math, asked by megeetapradhan2404, 5 months ago

The length of a chord at a distance of 52 cm from the centre of a circle is 78 cm what is the length of another chord at a distance of 60cm from the centre of the some circle

Answers

Answered by GlamorousAngel
88

━━━━━━━━━━━━━━━━━━━━━━━━━━━

Answer:-

The chord is bisected by the perpendicular from the center. Let the perpendicular from the center O meets the chord AB at C .

 \small \rm{\red{In  \: triangle  \:  AOC, } }

  •  \small \rm{ < C=90}

  •  \small \rm{AO = radius}

  •  \small \rm{AC= \frac{1}{2} }

  •  \small{ \rm{AB =  \frac{78}{2 }=39 \: cm}}

  •  \small \rm{OC  \: = \: distance  \: of  \: the  \: chord \:  from  \: the \:  center \:= 52  \: cm}

 \small \rm{\red{In \:  ∆AOC,}}

 \small \rm{AO^2= OC^2+AC^2}

 \small {\rm{AO^2 = 52^2 +39^2}}

 \small \rm{\boxed{AO= 65 \: cm.}}

 \small \rm{\underline{Let  \: the \:  other  \: chord  \: be  \: PQ \:  which \:  is \:  60  \: cm\:away  \: from  \: the  \: center \:  O.}}

  •  \small \rm{Let \:  OR = 60 .}

 \small\red{ \rm{In  \: ∆POR ,}}

 \small \rm{PO ^2= PR^2+OR^2}

 \small \rm{PR^2= PO^2-OR^2}

 \small \rm{=65^2–60^2 = 625}

 \small \rm{\boxed{PR=25 \:  cm.}}

 \therefore \small\underline{ \underline{\blue{ \rm{Length \:  of  \: the \:  chord   \: PQ =  2 \: PR=50  \: cm.}}}}

━━━━━━━━━━━━━━━━━━━━━━━━━━━

Answered by smdluqmaan
5

Answer:

pr= 2pr=50...................

Similar questions