English, asked by zara04, 4 months ago

the length of a chord at a distance of 52 cm from the centre of a circle is 78cm. what is length of the another chord at a distance of 60 cm from the centre of the same circle?​

Answers

Answered by prithika27555
1

Answer:

The chord is bisected by the perpendicular from the center. Let the perpendicular from the center O meets the chord AB at C .

In triangle AOC, <C=90 . AO = radius , AC=1/2 AB = 78/2 =39cm

OC =distance of the chord from the center = 52 cm

In ∆AOC,

AO^2= OC^2+AC^2

AO^2 = 52^2 +39^2

AO= 65cm.

Let the other chord be PQ which is 60 cm away from the center O.

Let OR = 60 .

In ∆POR ,

PO ^2= PR^2+OR^2

PR^2= PO^2-OR^2

=65^2–60^2 = 625

PR=25 cm.

Length of the chord PQ=2PR=50 cm.

Answered by Anonymous
11

Answer:-

The chord is bisected by the perpendicular from the center. Let the perpendicular from the center O meets the chord AB at C .

\small \rm{\red{In \: triangle \: AOC, } }

\small \rm{ &lt; C=90}

\small \rm{AO = radius}

\small \rm{AC= \frac{1}{2} }

\small{ \rm{AB = \frac{78}{2 }=39 \: cm}}

\small \rm{OC \: = \: distance \: of \: the \: chord \: from \: the \: center \:= 52 \: cm}

\small \rm{\red{In \: ∆AOC,}}

\small \rm{AO^2= OC^2+AC^2}

\small {\rm{AO^2 = 52^2 +39^2}}

\small \rm{\boxed{AO= 65 \: cm.}}

\small \rm{\underline{Let \: the \: other \: chord \: be \: PQ \: which \: is \: 60 \: cm\:away \: from \: the \: center \: O.}}

\small \rm{Let \: OR = 60 .}

\small\red{ \rm{In \: ∆POR ,}}

\small \rm{PO ^2= PR^2+OR^2}

\small \rm{PR^2= PO^2-OR^2}

\small \rm{=65^2–60^2 = 625}

\small \rm{\boxed{PR=25 \: cm.}}

\therefore \small\underline{ \underline{\blue{ \rm{Length \: of \: the \: chord \: PQ = 2 \: PR=50 \: cm.}}}}

Similar questions