Math, asked by siya4545, 9 months ago

The length of a conducting wire is 50 cm and its radius is 0.5 mm. If its resistance is 30 Ω , what is the Resistivity of it's material?

Answers

Answered by Anonymous
133

▪︎■ ANSWER ■▪︎

\bf\underline{Solution-}

L = 50 \: cm = 50 \times 10 {}^{ - 2}m  \\ r = 0.5 \: mm = 0.5 \times 10 {}^{ - 3} m \\  = 5 \times 10 {}^{ - 4}m \: and \: r = 30  \: Ω \:  \\

Resistivity \: ρ \:  =  \frac{ra}{l}  \\ and \: a = \pi {r}^{2}  \\   \therefore \: ρ \:  = r \frac{\pi {r}^{2} }{l}

 = \frac{30 \times 3.14 \times (5 \times  {10}^{ - 4 ){}^{2} } }{50 \times 10}  \\ \\  =  \frac{30 \times3 .14 \times 25 \times  {10}^{ - 8} }{50 \times  - 10 {}^{ - 2} }  \\ \\  = 47.1 \times  {10}^{ - 6}  \: Ω  \: m\\ = 4.71 \times  {10}^{ - 5} \:  Ω \: m

\therefore Resistivity of the wire is \boxed{ 4.71×10^{-5}Ω\:m}

Answered by praseethanerthethil
2

Answer:

50cm=50×10−2mr=0.5mm=0.5×10−3m=5×10−4mandr=30Ω</p><p></p><p>\begin{gathered}Resistivity \: ρ \: = \frac{ra}{l} \\ and \: a = \pi {r}^{2} \\ \therefore \: ρ \: = r \frac{\pi {r}^{2} }{l} \end{gathered}</p><p></p><p>

Step-by-step explanation:

=50×1030×3.14×(5×10−4)2=50×−10−230×3.14×25×10−8=47.1×10−6Ωm=4.71×10−5Ωm</p><p></p><p>\therefore</p><p></p><p>

∴ Resistivity of the wire is \boxed{ 4.71×10^{-5}Ω\:m}4.71×10−5Ωm</p><p>

Similar questions