Math, asked by himanshuk35432, 5 months ago

the length of a diagonal of a cube is 7√3 cm.find the surface area​

Answers

Answered by aviralkachhal007
1

\huge{\mathfrak{\blue{\underline{\underline{\pink{SOLUTION:-}}}}}}

Diagonal = 7√3

Also, Diagonal = √2 a

A.T.Q.

Diagonal = √2 a

7 √3 = √2 a

7√3 / √2 = a

Surface area = 6(a)²

=> 6 × ( 7√3 / √2)²

=> 6 × ( 147 / 2)

=> 3 × 147

=> 441cm²

Answered by ItsAritraKar7
0

\LARGE\mathfrak{\pink{Solution:-}}

\large\mathbb{\orange{GIVEN:-}}

  • The length of a diagonal of a cube is 7\sqrt{3} cm.

\large\mathbb{\purple{TO FIND:-}}

The surface area.

\large\mathbb{\green{FORMULA:-}}

Diagonal \:  o f  \: a \:  cube (d)=  \sqrt{3} a

Total  \: Surface \:  Area(T.S.A) = 6 {a}^{2}

(Where d is diagnol and a is the side of the cube.)

\large\mathbb{\red{ACCORDING \:TO\: THE\: QUESTION:-}}

d =  \sqrt{3} a \\  \\  \implies \: 7 \sqrt{3}  =  \sqrt{3} a\\  \\  \implies \:a =  \frac{ 7\sqrt{3} }{ \sqrt{3} } \\  \\  \implies \:a =7 \: cm

Side = 7 cm.

T.S.A = 6 {a}^{2}  \\  \\  \implies \:T.S.A =6 \times  {7}^{2}  \\  \\  \implies \:T.S.A  = 294 \:  {cm}^{2}

\large\mathbb{\purple{ANSWER:-}}

\\  \implies \boxed{T.S.A  = 294 \:  {cm}^{2} }


ItsAritraKar7: This can help you:)
Similar questions