Math, asked by Anonymous, 5 months ago

The length of a hall is 20 m and width 16 m.The sum of the areas of the floor and the flat roof is equal to the sum of the areas of the
four walls. Find the height of the hall.​

Answers

Answered by krishi52
3

Step-by-step explanation:

hope this helps mark me brainliest have a nice day

Attachments:
Answered by suraj5070
245

 \sf \bf \huge {\boxed {\mathbb {QUESTION}}}

\tt The\: length\: of \:a\: hall \:is \:20\: m \:and\: width\: 16\:m.\\\tt The \:sum\: of\: the\: areas\: of\: the\: floor\: and\: the\\\tt flat\: roof\: is \:equal\: to\: the\: sum\: of \:the \:areas\:of \\\tt the\: four\: walls.\: Find\: the \:height\: of \:the\: hall.

 \sf \bf \huge {\boxed {\mathbb {ANSWER}}}

 \sf \bf {\boxed {\mathbb {GIVEN}}}

  •  \sf \bf Length =20\:m
  •  \sf \bf Width=16\:m
  •  \sf \bf (area\:of\:4\:walls)=(area\:of\:floor) +(area\:of\:flat\:roof)

 \sf \bf {\boxed {\mathbb {TO\:FIND}}}

  •  \sf \bf Area\:of\:floor
  •  \sf \bf Area\:of \:flat\: roof
  •  \sf \bf Area\:of\:4\:walls
  •  \sf \bf Height\:of\:the\:hall

 \sf \bf {\boxed {\mathbb {SOLUTION}}}

 {\boxed {\boxed {\color {blue} {\sf \bf A= l \times b}}}}

  •  \sf \bf A=area\:of\:rectangle
  •  \sf \bf l=length
  •  \sf \bf b=breadth

 {\overbrace {\underbrace {\color {orange} {\sf \bf Substitute\:the\:values}}}}

 \tt {\color{purple} {Area\:of\:floor=A_1}}

 \sf \bf \implies A_1=20 \times 16

 \implies{\boxed {\color {red}{\sf \bf A_1=320\:{m}^{2}}}}

 \\

 \tt {\color{purple} {Area\:of\:floor=A_2}}

 \sf \bf \implies A_2=20 \times 16

 \implies{\boxed {\color {red}{\sf \bf A_2=320\:{m}^{2}}}}

------------------------------------------------------------

 {\boxed {\boxed {\color {blue} {\sf \bf L.S.A=2h( l +b) }}}}

  •  \sf \bf L.S.A=area \:of\:4\:walls
  •  \sf \bf h=height
  •  \sf \bf l=length
  •  \sf \bf b=breadth

 {\overbrace {\underbrace {\color {orange} {\sf \bf Substitute\:the\:values}}}}

 \tt {\color{purple} {Area\:of\:4\:walls=A_3}}

 \sf \bf \implies A_3= 2h(20+16)

 \sf \bf \implies A_3= 2h(36)

 \implies{\boxed {\color {red}{\sf \bf A_3=72h\:{m}^{2}}}}

------------------------------------------------------------

{\boxed {\color {purple} {\sf \bf (area\:of\:4\:walls)=(area\:of\:floor) +(area\:of\:flat\:roof)}}}

 {\overbrace {\underbrace {\color {orange} {\sf \bf Substitute\:the\:values}}}}

 \sf \bf \implies A_3=A_1+A_2

 \sf \bf \implies 72h=320+320

 \sf \bf \implies 72h=640

 \sf \bf \implies h=\dfrac{640}{72}

\implies {\boxed {\boxed{\color {green} {\sf \bf h=8.8888888888888 \:\:\:or\:\:\:h \approx 8.89}}}}

 \tt\underline {\color{orange} {\therefore The\:height \:of\:the\:wall\:is\:h=8.8888888888888 \:or\:h \approx 8.89}}

 \sf \bf \huge {\boxed {\mathbb {HOPE \:IT \:HELPS \:YOU}}}

__________________________________________

 \sf \bf \huge {\boxed {\mathbb {EXTRA\:INFORMATION}}}

 \sf \bf L.S.A\:of\:cuboid =2h(l+b)

 \sf \bf T.S.A\:of\:cuboid =2(lb+bh+hl)

 \sf \bf Volume\:of\:cuboid =l \times b \times h

 {\mathbb{\colorbox {orange} {\boxed{\boxed{\boxed{\boxed{\boxed{\colorbox {lime} {\boxed{\boxed{\boxed{\boxed{\boxed{\colorbox {aqua} {@suraj5070}}}}}}}}}}}}}}}

Similar questions