the length of a metalic pipe is 70 cm, inner diameter is 10 cm and thickness is 5 mm. if density of metal used is 8 g/cm^3, find mass of the pipe. Answer is 9240 grams
Answers
step \: by \: step \: eplanatation \\ \: \: \\ Diameter \: of \: the \: outer \: \: circle \: \ is \: 70 \: cm
\\
Radius \: of \: the \: outer \: circle \: \: \:is \: 70/2 = 35 \\
Given \: Thickness \: is = 10 cm
\\ Radius \: of \: the \: inner \: circle =
r = - 10 = 25 \: \\ length \: of \: the \: pipe = 5m = 500cm \\ hence \: volume \: of \: the \: pipe \: \pi \: r ^{2}h \: - \pi \: r ^{2}h \\ \pi \: h( {r}^{2} - r ^{2} ) \\ \pi h(r + r)(r - r) \\ 3.14 \times 500(35 + 25)(35 - 25) \\ 3.14 \times 500 \times 60 \times 10 \\ v = 942478 \: cm ^{3} \\ given \: density \: of \: metal \: 8g |cm^{3} \\ we \: know \: that \: mass \: is \: defined as \: the \: product \: of \: volume \: and \: density \: \\ mass \: = volume \times density \\ 942478 \times 8 = 7539824 \: grams \\
Answer:
The length of a metal pipe is 70 cm, the inside diameter is 10 cm and the thickness of the metal is 5 mm. If the density of metal is 8 g, find the force of the pipe.