Math, asked by gupta12345vg, 1 year ago


The length of a rectangle exceeds its breadth by 5 cm. If the length and breadth of the rectangle
are increased by 1 cm, the area increases by 34 cm?. Find the length and breadth of the rectangle.

Answers

Answered by sanvijoshi2007
10

here is ur answer sweetie.please mark as brainliest.

let the breadth -(x)cm

then length - (x+5)cm

area- l multiplied by b.

so x(x+5)cm

x sq. +5x

then after changes,

breadth-(x+1) cm

then length - (x+5+1)cm

length- (x+6) cm

area - l*b

area-(x+1)(x+6)

area-x sq. +(1+6)x +1*6

area-x sq. +7x + 6

a.t.q.

the area increases by 34 cm

x sq. +5x+34=x sq. +7x+6

5x-7x = 6-34

-2x= -28/-2

x =14

breadth =14 cm

length=x+5 cm

14+5cm

19 cm

thank u

please humble request mark as brainliest.

Answered by amitkumar44481
12

\huge{\boxed{\boxed{\red{\ulcorner{\mid{\overline{\underline{\bf{Answer:-}}}}}\mid}}}}

 \large\red \rightarrow l = 19.  \: \: and \:  \: b \:  = 14.

°•° Let breadth be ( x cm )

\star{Length = ( x + 5 ).}

{Area  = (l  \times \: b) }

{=(x+5)\:\times\: (x) }

 \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   = {x}^{2}  + 5.

\star{New Length = (x+5+1)}

{=x+6}

\star{New Breadth = (x+1) cm}

\star{New Area = (l \: \times\: b)}

{= (x+6)(x+1)}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  {x}^{2}  + 7x + 6.

Now,

 \star \: new \: area - original \: area \:  = 34. \\  \\  {x}^{2}  + 7x + 6 - ( {x}^{2}  + 5x) = 34. \\  \\   \cancel{x}^{2}  + 7x + 6 -  \cancel {x}^{2}  - 5x = 34. \\  \\  \rightarrow \: 2x = 28. \\  \\  \rightarrow \: x =   \frac{ \cancel2 \cancel8}{ \cancel2}  \\  \\  \rightarrow \: x = 14.

So ,

 \star \: breath \:  = 14 \: cm. \\  \\  \\  \\  \star \: length = 19 \: cm.

 \huge \red \star \: \:  \:  thank  \:  \: \: you \:  \:  \:  \red \star

<marquee>Follow me

<marquee>Mark as Brainliest

Similar questions