Math, asked by kiya571, 1 year ago

the length of a rectangle exceeds its breadth by 9 CM if the length and breadth is increased by 3 cm the area of the new rectangle will be 84 CM square more than that of the given rectangle find the length and breadth of the given rectangle check your solution.

Answers

Answered by Anonymous
23
\huge{\text{Solution - }}

___________________________

Let the breadth of the given rectangle = x cm

Then, its length = ( x + 9 ) cm

\textsf{area \: of \: the \: given \: rectangle}

= length × breadth
((x + 9) \times x) {cm}^{2} \\

___________________________

New breadth = ( x + 3 ) cm

New length = [( x + 9 ) + 3 ] cm
=> ( x + 12 ) cm

\textsf{area \: of \: new \: rectangle}

= length × breadth
((x + 12)(x + 3)) \: {cm}^{2}

___________________________

\textbf{according \: to \: question}

(area of the new rectangle) - ( area of given rectangle ) = 84 sq. cm

 = > (x + 12)(x - 3) - x(x + 9) = 84 \\ = > ({x}^{2} + 15x + 36) - ( {x}^{2} + 9x) = 84 \\ = > 6x + 36 = 84 \\ = > 6x = 48 \\ = > x = \frac{48}{6} \\ = > x = 8

Thus, the breadth = 8 cm
And, length = ( 8 + 9 ) cm = 17 cm.

___________________________

\textbf{checking}

In the given rectangle, we have

length = 17 cm , breadth = 8 cm.

Area of given rectangle = ( 17 × 8) sq.cm
136 {cm}^{2}

The new length = ( 17 + 3 ) cm = 20 cm,
new breadth = (8 + 3 ) cm = 11 cm.

The area of new rectangle = ( 20 × 11 ) sq.cm
 = > 220 {cm}^{2}

Now,

(area of the new rectangle) - ( area of given rectangle ) 84 sq.cm

 = > (220 - 136) {cm}^{2} = 84 {cm}^{2} \\ = > 84 {cm}^{2} = 84 {cm}^{2}

LHS = RHS

So, Length = 17 cm and breadth = 8 cm

___________________________

\huge{\text{THANKS}}
Answered by Anonymous
1
Let the breadth of the given rectangle = x cm

Then, its length = ( x + 9 ) cm

\textsf{area \: of \: the \: given \: rectangle}area  of  the  given  rectangle 

= length × breadth 
\begin{lgathered}((x + 9) \times x) {cm}^{2} \\\end{lgathered}((x+9)×x)cm2​ 

___________________________

New breadth = ( x + 3 ) cm 

New length = [( x + 9 ) + 3 ] cm 
=> ( x + 12 ) cm

\textsf{area \: of \: new \: rectangle}area  of  new  rectangle 

= length × breadth 
((x + 12)(x + 3)) \: {cm}^{2}((x+12)(x+3))cm2 

___________________________

\textbf{according \: to \: question}according  to  question 

(area of the new rectangle) - ( area of given rectangle ) = 84 sq. cm

\begin{lgathered}= > (x + 12)(x - 3) - x(x + 9) = 84 \\ = > ({x}^{2} + 15x + 36) - ( {x}^{2} + 9x) = 84 \\ = > 6x + 36 = 84 \\ = > 6x = 48 \\ = > x = \frac{48}{6} \\ = > x = 8\end{lgathered}=>(x+12)(x−3)−x(x+9)=84=>(x2+15x+36)−(x2+9x)=84=>6x+36=84=>6x=48=>x=648​=>x=8​ 

Thus, the breadth = 8 cm 
And, length = ( 8 + 9 ) cm = 17 cm.

___________________________

\textbf{checking}checking 

In the given rectangle, we have 

length = 17 cm , breadth = 8 cm.

Area of given rectangle = ( 17 × 8) sq.cm
136 {cm}^{2}136cm2 

The new length = ( 17 + 3 ) cm = 20 cm,
new breadth = (8 + 3 ) cm = 11 cm.

The area of new rectangle = ( 20 × 11 ) sq.cm
= > 220 {cm}^{2}=>220cm2 

Now,

(area of the new rectangle) - ( area of given rectangle ) 84 sq.cm

\begin{lgathered}= > (220 - 136) {cm}^{2} = 84 {cm}^{2} \\ = > 84 {cm}^{2} = 84 {cm}^{2}\end{lgathered}=>(220−136)cm2=84cm2=>84cm2=84cm2​ 

LHS = RHS 

So, Length = 17 cm and breadth = 8 cm
Similar questions