Physics, asked by HeIpMeMods, 2 months ago

The length of a rectangle in twice its breadth . If the perimeter is 36 meters , find the length and breadth of the rectangle.​

Answers

Answered by MoonlightPhoenix
256

✰ Question Given :

  • ➦ The length of a rectangle in twice its breadth . If the perimeter is 36 meters , find the length and breadth of the rectangle.

✰ Required Solution :

✯ Value Given to us :

  • ⇢ Perimeter of rectangle = 36 m

✯ Assumption Needed :

  • ⇢ let breadth of rectangle be x

  • ⇢ let length of rectangle be 2x

✯ Formula used Here :

  • ⇢ Perimeter = 2 ( l + B )

✯ Putting Value in Formula :

  • ⇢ Perimeter = 2 ( l + B )

  • ⇢ 36 m = 2 ( 2x + x )

  • ⇢ 36 m = 2 × 3x

  • ⇢ 36 m = 6x

  • X = 6 m

✯ Now Substituting X Value :

• For length :-

  • ⇢ length = 2x

  • ⇢ length = 12 m

• For Breadth :-

  • ⇢ Breadth = x

  • ⇢ Breadth = 6 m

✰ Therefore :

  • ➦ Length of rectangle = 12 m

  • ➦ Breadth of rectangle = 6 m

_______________________

Answered by sethrollins13
207

Given :

  • Length of a Rectangle is twice its breadth .
  • Perimeter of the Rectangle is 36 m .

To Find :

  • Length and Breadth of the Rectangle .

Solution :

\longmapsto\tt{Let\:Breadth\:be=x}

As Given that length of a rectangle is twice its breadth . So ,

\longmapsto\tt{Length=2x}

Using Formula :

\longmapsto\tt\boxed{Perimeter\:of\:Rectangle=2(l+b)}

Putting Values :

\longmapsto\tt{36=2(2x+x)}

\longmapsto\tt{\cancel\dfrac{36}{2}=3x}

\longmapsto\tt{18=3x}

\longmapsto\tt{x=\cancel\dfrac{18}{3}}

\red\longmapsto\:\large\underline{\boxed{\bf\green{x}\orange{=}\purple{6}}}

Therefore :

\longmapsto\tt{Breadth\:of\:Rectangle=x}

\longmapsto\tt\bf{6\:m}

\longmapsto\tt{Length\:of\:Rectangle=2(6)}

\longmapsto\tt\bf{12\:m}

Similar questions