Chemistry, asked by tfujfyjg, 4 months ago

The length of a rectangle is 16 cm and the length of its diagonal is 20 cm. Find the area of the rectangle​​

Answers

Answered by Anonymous
1

Answer:

\huge{\sf{\green{a} \blue{n} \pink{s} \purple{w} \green{e} \red{r}}}

The Length, breadth and Diagonal of a rectangle form a right-angled triangle with the length and breadth as the perpendicular sides and the diagonal as the hypotenuse.

∴ diagonal² = length² + breadth² (by the Pythagorean theorem)

∴ 20² = 16² + b²

⇒ 20² - 16² = b²

⇒144 = b²

∴ b = √144 cm = 12 cm

Area of rectangle = length × breadth

= (16 × 12)cm²

= 192 cm²

Answered by OoINTROVERToO
0

 \bf{ \pmb{ \underline{ \gray{GIVEN}}  }}\\  \cal \: Length \:  of \:  R ectangle \:  is \:  16 cm  \\  \cal \: Length  \: of \:  its  \: Diagonal  \: is  \: 20  \: cm  \\  \\ \bf { \pmb { \underline{ \gray{ To  \: F ind }}}}\\  \large \: \blue{ \tt{  Area \:  of  \: Rectangle}}  \\  \\ \huge \bf { \pmb{  \overline{\underline{ \color{black}{ \mid \: SOLUTION \:  \mid}}}}} \\  \\   \large\tt{  \pmb{ \red{FORMULA \:  \:   \: USED}}}  \\  \small \orange{\bf[\:{{(Diagonal)}^{2} = {(Length)}^{2} + {(Breadth)}^{2}}\:]} \\  \\  \sf{ \pmb{ CALCULATION  }}\\  \rm \: (20)² = (16)² + (b)² \\ 400 = 257 + (b)² \\ 400 - 256 = (b)² \\ 144 = b² \\  \rm \:  \sqrt{144 }= b \\  \rm \: 12 = b \\  \cal  \blue{Thus,  \: The \:  Breadth  \: of  \: Rectangle \:  is  \: 12  \: cm . }\\  \\  \large\tt{ \pmb{ \red{ FORMULA \:   \: \:  USED}}}  \\ \small \orange{ \bf[\:{Area \: of \: Rectangle =Length\times{Breadth}}\:] }\\  \\  \sf{ \pmb{CALCULATION  }}\\ \rm Length × Breadth \\ 16 × 12 \\ 192 \\  \cal \blue{ Thus,  \: The  \: Area \:  of  \: Rectangle  \: is  \: 192 \:  cm² }

Similar questions