Math, asked by Anonymous, 1 month ago

The length of a rectangle is 20 cm more than its breadth. If the perimeter is 100 cm, find the dimension of the rectangle.
Don't spam otherwise reported!!​

Answers

Answered by Anonymous
74

Dimensions of the rectangle:

Breadth (b) = 15 cm

Length (l) = 35 cm

Explanation:

Let breadth of a rectangle = b cm

length (l) = 20 cm more than its breadth

= (b+20)cm

Perimeter of the rectangle (P) = 100 cm [given]

=> 2(length + breadth) = 100cm

=> 2(b + 20 + b)=100 cm

 \rm\implies 2b+20=\frac{100cm}{2} \\\rm\implies 2b = 50cm -20cm \\ \rm\implies 2b = 30cm  \\\rm\implies b = \frac{30cm}{2} \\  \rm\implies \bold b = 15cm  \\

Therefore,

Dimensions of the rectangle:

  • Breadth (b) = 15 cm
  • Length (l) = b + 20 = 15+20 = 35 cm
Answered by misscuteangel
16

 \red \bigstar \sf \:  \: { \underline{ \underline {G \: I \: V \: E \: N :}}}

 \:

Dimensions of the rectangle:

  • Breadth (b) = 15 cm

  • Length (l) = 35 cm

 \:

 \red \bigstar \:  \: { \sf{ \underline{ \underline{ Explanation: }}}}

  • Let breadth of a rectangle = b cm

  • length (l) = 20 cm more than its breadth

 \sf \:  = (b + 20) \: cm

Perimeter of the rectangle (P) = 100 cm [given]

 \:

=> 2(length + breadth) = 100cm

 \:

=> 2(b + 20 + b)=100 cm

 \\  \rm \implies \sf \: 2b + 20 =  \dfrac{100 \: cm}{2}  \\   \\  \rm \implies \sf \: 2b = 50 - 30 \:  \\  \\  \rm \implies \sf \: 2b = 30 \\  \\  \rm \implies \sf \: b =  \dfrac{30}{2}

 \\ \implies  { \boxed{ \frak{ \blue{b = 15 \: cm}}}}

 \:  \:

 \therefore \sf \: dimensions \: of \: the \: rectangle : :

 \:

 \implies { \boxed{ \frak{ \green{breadth = 15 \: cm}}}}

 \:

 \longmapsto { \boxed{ \frak{ \red{length = \: b + 20 = 15 + 20 }}}}

 \:

 \longmapsto \: { \boxed{ \frak{ \red{l = 35 \: cm}}}}

Similar questions