Math, asked by rparihar8787, 1 month ago

The length of a rectangle is 27 m longer than its breadth. If the perimeter of the rectangle of the rectangle is 110m then Find its area​

Answers

Answered by Anonymous
7

Question :

  • Length  \leadsto (b + 27)m
  • Breadth  \leadsto x
  • Perimeter  \leadsto 110m

To find :

  • We have to find the Length , breadth and the Area of the rectangle

Solution :

:  \implies \sf 110m = 2 \times[(B + 27) + x ] \\  \\  \\ :  \implies \sf \dfrac{ \cancel{110}}{ \cancel{2}}  = 55m \\  \\  \\ :  \implies \sf 55m = [(B + 27) + x] \\  \\  \\ :  \implies \sf 55 - 27 = 28m \\  \\  \\ :  \implies \sf 28m = (2  \purple\times x) \\  \\  \\  :  \implies \sf  \dfrac{ \cancel{28}}{ \cancel{2}} = 14m \\  \\  \\   { \underline{ \boxed{ \mathfrak{ \pink{Breadth \leadsto 14m}}}}} \\  \\  \\  \\ :  \implies \sf Length \:  = (B + 27) \\  \\  \\ :  \implies \sf 14m + 27 \\  \\  \\ :  \implies \sf { \underline{ \boxed{ \mathfrak{ \pink{ Length\leadsto 41m}}}}} \\  \\  \\  \therefore { \underline{ \sf{Now, \: we \: will \: find \: the \: area \: of \: rectangle :}}} \\  \\  \\  \;\boxed{\sf{\purple{Area_{\:(rectangle)} = Length \times Breadth}}} \\  \\  \\ :  \implies \sf 14m \times 41m \\  \\  \\  :  \implies { \underline{ \boxed{ \mathfrak{ \pink{Area \leadsto 247 {m}^{2} }}}}}

•°• Hence, verified!

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀⠀⠀⠀⠀⠀⠀⠀

Attachments:
Similar questions