Math, asked by AniruddhPratapSingh, 12 hours ago

The length of a rectangle is 27 m longer than its breadth. If the perimeter of the rectangle is 110 m, find its area.​

Answers

Answered by queen0848
18

Answer:

Breadth=x

Length=x+27

Perimeter=2(length+breadth)

110=2(x+x+27)

55=2x+27

28=2x

x=14

Breadth=14m

Length=41m

Area=14*41=574m²

Step-by-step explanation:

pls I have 0 following mark me as brainliat

Answered by Anonymous
66

\Large\underline{ \underline{  \text{Question:}}} \\

  • The length of a rectangle is 27 m longer than its breadth. If the perimeter of the rectangle is 110 m, find its area.

\Large\underline{ \underline{  \text{Solution:}}} \\

Let's,

  •  \text{The breadth be }x. \\

So,

  •  \text{The length should be }x + 27m. \\

As given,

  •  \text{The perimeter of rectangle is }110m. \\

As we know that,

  • \text{Perimeter}_{\text{(Rectangle)}} = 2( \text{Length + Breadth}) \\

So we can say that,

 \cdot \cdot \cdot \longrightarrow 2( \text{Length + Breadth}) = 110m \\

Let substitute the assumed values,

 \cdot \cdot \cdot \longrightarrow 2 [  x + (x + 27m)] = 110m \\

 \cdot \cdot \cdot \longrightarrow 2 [  x + x + 27m] = 110m \\

 \cdot \cdot \cdot \longrightarrow 2x + 27m=  \frac{110m}{2} \\

 \cdot \cdot \cdot \longrightarrow 2x + 27m=  \cancel \frac{110m}{2} \\

 \cdot \cdot \cdot \longrightarrow 2x + 27m= 55m \\

 \cdot \cdot \cdot \longrightarrow 2x= 55m - 27m \\

 \cdot \cdot \cdot \longrightarrow 2x= 28m \\

 \cdot \cdot \cdot \longrightarrow x=  \frac{28m}{2} \\

 \cdot \cdot \cdot \longrightarrow x=   \cancel\frac{28m}{2} \\

 \cdot \cdot \cdot \longrightarrow   \boxed{x=   14m} \\

Hence,

  •  \text{The breadth is }14m. \\

And,

  •  \text{The length should be }41m. \\

As we know that,

  • \text{Area}_{\text{(Rectangle)}} = \text{Length}   \times \text{  Breadth} \\

Let substitute the values,

\cdot \cdot \cdot \longrightarrow \text{Area}_{\text{(Rectangle)}} = 14m \times 41m \\

\cdot \cdot \cdot \longrightarrow  \boxed{\text{Area}_{\text{(Rectangle)}} = 574 {m}^{2}}  \\

Therefore,

  • The Area of rectangle is 574 square metres.

.

\Large\underline{ \underline{  \text{Required Answer:}}} \\

  • The Area of rectangle is 574 square metres.

Similar questions