Math, asked by vivaang008, 10 months ago

The length of a rectangle is 3 cm more than twice the breadth.

If its perimeter is 72 cm, find the length and breadth.

Answers

Answered by bangtangranger
3

Answer:

breadth = 11 cm

length = 25 cm

Step-by-step explanation:

Let 'b' be the breadth of the rectangle

Given,

l = 3 + 2b

P = 72 cm

We know that,

2( l + b ) = P

2 ( 3 + 2b + b ) = 72

2 ( 3 + 3b ) = 72

6 + 6b = 72

72 - 6 = 6b

66 = 6b

b = 66/6 = 11 cm

∴ Breadth = b = 11 cm

Length = l = 3 + 2b = 3 + 2(11) = 25 cm//

Please mark as branliest

Answered by silentlover45
14

\underline\mathfrak{Given:-}

  • \: \: \: \: \: \: \: Line \: \: is \: \: {3cm} \: \: more \: \: twice \: \: it's \: \: breadth .
  • \: \: \: \: \: \: \: Perimeter \: \: \leadsto  \: \: {72cm} \: m.

\underline\mathfrak{To \: \: Find:-}

  • \: \: \: \: \: length \: \: and \: \: breadth \: ?

\underline\mathfrak{Solutions:-}

  • \: \: \: \: \: \: \: Let \: \: the \: \: breadth \: \: be \: \: x \: \: cm.
  • \: \: \: \: \: \: \: Let \: \: the \: \: length \: \: be \: \: {2x} \: + \: {3} \: cm.

\: \: \: \: \: \: \: \therefore \: Perimeter \: \: of \: \: rectangle \: \: \leadsto \: \: {2} \: {(length \: + \: breadth)}

\: \: \: \: \: \: \: \leadsto  \: \: {72} \: \: = \: \: {2} \: {[{({2x} \: + \: {3})} \: + \: {x}]}

\: \: \: \: \: \: \: \leadsto  \: \: {72} \: \: = \: \: {2} \: {[{3x} \:   + \: {3}]}

\: \: \: \: \: \: \: \leadsto  \: \: \frac{72}{2} \: \: = \: \: {3x} \:   + \: {3}

\: \: \: \: \: \: \: \leadsto  \: \: {36} \: \: = \: \: {3x} \:   + \: {3}

\: \: \: \: \: \: \: \leadsto  \: \: {36} \: - \: {3} \: \: = \: \: {3x}

\: \: \: \: \: \: \: \leadsto  \: \: {33} \: \: = \: \: {3x}

\: \: \: \: \: \: \: \leadsto  \: \: {x} \: \: = \: \: \frac{33}{3}

\: \: \: \: \: \: \: \leadsto  \: \: {x} \: \: = \: \: {11}

  • \: \: \: \: \: \: \: Hence, \: \: The \: \: breadth \: \: of \: \: rectangle \: \: is \: \: {11} \: cm.

\: \: \: \: \: \: \: The \: \: length \: \: of \: \: rectangle \: \: \leadsto \: \: {2x} \: + \: {3}

\: \: \: \: \: \: \: \leadsto \: \: {2} \: \times \: {11} \: + \: {3}

\: \: \: \: \: \: \: \leadsto \: \: {22} \: + \: {3}

\: \: \: \: \: \: \: \leadsto \: \: {25}

\underline\mathfrak{Important \: \: formula:-}

  • \: \: \: \: \: \: \: Area \: \: of \: \: rectangle \: \: {l} \: \times \: {b}
  • \: \: \: \: \: \: \: Perimeter \: \: of \: \: rectangle \: \: {2} \: {({l} \: + \: {b})}
  • \: \: \: \: \: \: \: Diagonal \: \: of \: \: rectangle \: \: \sqrt{{l}^{2} \: + \: {b}^{2}}
  • \: \: \: \: \: \: \: Each \: \: angle \: \: of \: \: {90} \: \degree.

\: \: \: \: \: \: \: Where,

  • \: \: \: \: \: \: \: A \: \: \leadsto  \: \: Area \: \: Of \: \: Rectangle.
  • \: \: \: \: \: \: \: L \: \: \leadsto  \: \: Length \: \: Of \: \: Rectangle.
  • \: \: \: \: \: \: \: B \: \: \leadsto  \: \: Breadth \: \: Of \: \: Rectangle.

__________________________________

Similar questions