Math, asked by devdevika401, 5 hours ago

The length of a rectangle is 3cm more than its breadth . perimeter is 50cm .
find the length and breadth of the rectangle​

Answers

Answered by anubhav3437
1

Answer:

Then the length = x+3. Perimeter of rectangle is 50 cm. Formula to find perimeter = 2( l + b ) Therefore, 2 ( l + b ) =50 cm.

Answered by BlessedOne
28

Given :

  • Length of rectangle is 3 cm more than its breadth.

  • ‎Perimeter is 50 cm

To find :

  • Length and breadth of the rectangle.

Formula to be used :

\bf\:\dag\: Perimeter~of~rectangle~=~2(l+b)

where ,

  • l denotes length of the rectangle
  • b denotes breadth of the rectangle

Assumption :

Let the breadth of the triangle be b.

Solution :

According to the question ,

Length of a rectangle is 3 cm more than its breadth.

\sf\therefore\:Length~=~b~+~3

Again ,

Perimeter of the rectangle is given as 50 cm.

Applying formula -

\sf\longrightarrow\:2(l+b)~=~50

Substituting the values -

\sf\longrightarrow\:2[(b+3)+b]~=~50

\sf\longrightarrow\:2[b+3+b]~=~50

\sf\longrightarrow\:2[2b+3]~=~50

\sf\longrightarrow\:4b+6~=~50

\sf\longrightarrow\:4b~=~50-6

\sf\longrightarrow\:4b~=~44

\sf\longrightarrow\:b~=~\frac{44}{4}

\sf\longrightarrow\:b~=~\cancel{\frac{44}{4}}

\small{\underline{\boxed{\mathrm{\longrightarrow\:breadth~=~11~cm}}}}

Now calculating length of the rectangle by substituting the value of breadth -

\sf\:Length~=~b~+~3

\sf\to\:Length~=~11~+~3

\small{\underline{\boxed{\mathrm{\longrightarrow\:length~=~14~cm}}}}

⠀⠀⠀⠀⠀─━━━━━━━━━━━━─

Verification :

Perimeter of the rectangle = 50 cm

\sf\leadsto~2(l+b) ~=~50

\sf\leadsto~2(14+11) ~=~50

\sf\leadsto~2(25) ~=~50

\sf\leadsto~50 ~=~50

Hence Verified !~

Henceforth,

➻ Length of the rectangle = \small{\mathfrak{14~cm}}

➻ Breadth of the rectangle = \small{\mathfrak{11~cm}}

‎ ‎

══════════════════

Similar questions