Math, asked by safinshaji106, 8 months ago

The length of a rectangle is 3cm more than thrice its breath . its diagonal is 1cm more than the length of a rectangle. what are the length and breath of the rectangle? (Hint: let the breath=x and length=3x+3)​

Answers

Answered by SarcasticL0ve
32

GivEn:

  • Length of rectangle is 3 cm more than thrice the breadth
  • Diagonal of Rectangle is 1 cm more than the length.

⠀⠀

To find:

  • Length and breadth of rectangle?

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

☯‎‎‎‎‎‎ ‎‎‎‎‎‎Let Breadth of rectangle be x cm.

⠀⠀

Therefore,

⠀⠀

Length of Rectangle is,

3 cm more than thrice the breadth

⠀⠀

:\implies\sf 3 \times x + 3\\ \\

:\implies\sf \red{3x + 3}\\ \\

Also, Diagonal of Rectangle is 1 cm more than length,

⠀⠀

:\implies\sf (3x + 3) + 1\\ \\

:\implies\sf \red{3x + 4}\\ \\

We know that each angle of a rectangle is of 90°.

⠀⠀

Therefore,

★ In right angled ∆ ABC,

⠀⠀

  • AB = Perpendicular = x cm
  • BC = Base = 3x + 3 cm
  • AC = Hypotenuse = 3x + 4 cm

⠀⠀

\setlength{\unitlength}{1.5cm}\begin{picture}(8,2)\thicklines\put(7.7,3){\tt\large{D}}\put(7.7,1){ \tt\large{C}}\put(9.3,0.7){\sf{\large{3x + 3 cm}}}\put(11.5,1){ \tt\large{B}}\put(8,1){\line(1,0){3.5}}\put(8,1){\line(0,2){2}}\put(11.5,1){\line(0,3){2}}\put(8,3){\line(3,0){3.5}}\put(8.4,2){\sf{\large{3x + 4 cm}}}\qbezier(8,1)(8,1)(11.5,3)\put(11.5,3){ \tt\large{A}}\put(11.3,1){\line(0,2){0.2}}\put(11.3,1.2){\line(2,0){0.2}}\put(11.8,2){\sf{\large{x cm}}}\end{picture}

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

{\underline{\sf{\bigstar\;Using\; Pythagoras\; Theorem\;:}}}\\ \\

\star\;{\boxed{\sf{\purple{H^2 = B^2 + P^2}}}}\\ \\

:\implies\sf (3x + 4)^2 = (3x + 3)^2 + x^2\\ \\

:\implies\sf (3x)^2 + (4)^2 + 2 \times 3x \times 4 = (3x)^2 + (3)^2 + 2 \times 3x \times 3 + x^2\\ \\

:\implies\sf \cancel{9x^2} + 16 + 24x = \cancel{9x^2} + 9 + 18x + x^2\\ \\

:\implies\sf x^2 + 18x + 9 - 24x - 16 = 0\\ \\

:\implies\sf x^2 - 6x - 7 = 0\\ \\

Now, Splitting middle term,

⠀⠀⠀

:\implies\sf x^2 + x - 7x - 7 = 0\\ \\

:\implies\sf x(x + 1) - 7(x + 1) = 0\\ \\

:\implies\sf (x + 1)(x - 7) = 0\\ \\

:\implies\sf x = - 1\;or\; x = 7\\ \\

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

We know that,

⠀⠀

Dimensions of Rectangle can't be negative.

So, Breadth of Rectangle = 7 cm

⠀⠀

Therefore,

  • Breadth, x = 7 cm
  • Length, (3x + 3) = 3 × 7 + 3 = 21 + 3 = 24 cm
  • Diagonal, (3x + 4) = 3 × 7 + 4 = 21 + 4 = 25 cm
Similar questions