Math, asked by Anonymous, 1 month ago

The length of a rectangle is 4 cm more than its breadth. If the perimeter of the rectangle is 40 , find it’s length and breadth. What is the area of a square which has the same perimeter as this rectangle?

Answers

Answered by SparklingThunder
11

 \huge\purple{ \underline{ \boxed{\mathbb{\red{QUESTION : }}}}}

The length of a rectangle is 4 cm more than its breadth. If the perimeter of the rectangle is 40 cm, find it’s length and breadth. What is the area of a square which has the same perimeter as this rectangle?

\huge\purple{ \underline{ \boxed{\mathbb{\red{ANSWER : }}}}}

Length of rectangle = 12 cm

Breadth of rectangle = 8 cm

Area of square = 100  { \sf cm}^{ \: 2}

\huge\purple{ \underline{ \boxed{\mathbb{\red{EXPLANATION : }}}}}

\green{ \large \underline{ \mathbb{\underline{GIVEN : }}}}

The length of a rectangle is 4 cm more than its breadth.

The perimeter of the rectangle is 40 cm.

Perimeter of square = Perimeter of rectangle.

 \green{ \large \underline{ \mathbb{\underline{TO  \: FIND : }}}}

The length and breadth of the rectangle .

Area of square .

\green{ \large \underline{ \mathbb{\underline{FORMULAS \:  USED: }}}}

 \purple{ \boxed{ \textsf{Perimeter of rectangle = 2 \: ( L + B)}}}

\purple{ \boxed{ \textsf{Perimeter of square = 4$\times$side}}}

 \purple{ \boxed{ \textsf{Area of square = side$\times$side}}}

\green{ \large \underline{ \mathbb{\underline{SOLUTION: }}}}

\red{ \underline{\underline{ \textbf{Case 1  : }}}}

Let breadth of rectangle = x cm

Then length of rectangle = x + 4 cm

 \red{ \underline{\underline{ \textbf{According to question : }}}}

 \textsf{Perimeter of rectangle = 2 \: ( L + B)}

 \displaystyle \longrightarrow \bf40 \: cm = 2 \: (x + 4 + x) \\  \\  \displaystyle \longrightarrow \bf40 \: cm = 2 \: (2x + 4) \:  \:  \:  \:  \:  \\  \\  \displaystyle \longrightarrow \bf40 \:cm = 4x + 8 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \displaystyle \longrightarrow \bf4x + 8 = 40 \: cm \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \displaystyle \longrightarrow \bf4x = 40 - 8 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \displaystyle \longrightarrow \bf4x = 32 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \displaystyle \longrightarrow \bf x =  \frac{32}{4}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \displaystyle \longrightarrow \bf x = 8 \: cm \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \purple{ \boxed{ \begin{array}{l} \textsf{Breadth of rectangle  = x = 8  cm}\\  \\  \textsf{Length of rectangle  = x + 4 = 8 + 4 = 12 \: cm }\end{array}}}

\red{ \underline{\underline{ \textbf{Case 2 : }}}}

Let side of square as x .

 \red{ \underline{\underline{ \textbf{According to question : }}}}

 \textsf{Perimeter of square = Perimeter of rectangle} \\  \\ \longrightarrow  \sf{4 \times side = 40 \: cm} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \longrightarrow  \sf{4 \times x = 40} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \longrightarrow  \sf{x =  \frac{40}{4} } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \longrightarrow  \sf{x = 10 \: cm} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \textsf{Side of square = 10 cm}

 \textsf{Area of square = side$\times$side} \\  \\ \textsf{Area of square = 10$\times$10} \:  \:  \:  \:  \\  \\ \textsf{Area of square = 100 \: ${ \sf cm}^{2}$ }

\purple{ \boxed{ \begin{array}{l} \textsf{Area of square = 100 \:  $ \sf{cm}^{2}$}\end{array}}}

Answered by ArpitSharma16
3

 \huge\purple{ \underline{ \boxed{\mathbb{\red{QUESTION : }}}}}

The length of a rectangle is 4 cm more than its breadth. If the perimeter of the rectangle is 40 cm, find it’s length and breadth. What is the area of a square which has the same perimeter as this rectangle?

\huge\purple{ \underline{ \boxed{\mathbb{\red{ANSWER : }}}}}

Length of rectangle = 12 cm

Breadth of rectangle = 8 cm

Area of square = 100  { \sf cm}^{ \: 2}

\huge\purple{ \underline{ \boxed{\mathbb{\red{EXPLANATION : }}}}}

\green{ \large \underline{ \mathbb{\underline{GIVEN : }}}}

The length of a rectangle is 4 cm more than its breadth.

The perimeter of the rectangle is 40 cm.

Perimeter of square = Perimeter of rectangle.

 \green{ \large \underline{ \mathbb{\underline{TO  \: FIND : }}}}

The length and breadth of the rectangle .

Area of square .

\green{ \large \underline{ \mathbb{\underline{FORMULAS \:  USED: }}}}

 \purple{ \boxed{ \textsf{Perimeter of rectangle = 2 \: ( L + B)}}}

\purple{ \boxed{ \textsf{Perimeter of square = 4$\times$side}}}

 \purple{ \boxed{ \textsf{Area of square = side$\times$side}}}

\green{ \large \underline{ \mathbb{\underline{SOLUTION: }}}}

\red{ \underline{\underline{ \textbf{Case 1  : }}}}

Let breadth of rectangle = x cm

Then length of rectangle = x + 4 cm

 \red{ \underline{\underline{ \textbf{According to question : }}}}

 \textsf{Perimeter of rectangle = 2 \: ( L + B)}

 \displaystyle \longrightarrow \bf40 \: cm = 2 \: (x + 4 + x) \\  \\  \displaystyle \longrightarrow \bf40 \: cm = 2 \: (2x + 4) \:  \:  \:  \:  \:  \\  \\  \displaystyle \longrightarrow \bf40 \:cm = 4x + 8 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \displaystyle \longrightarrow \bf4x + 8 = 40 \: cm \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \displaystyle \longrightarrow \bf4x = 40 - 8 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \displaystyle \longrightarrow \bf4x = 32 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \displaystyle \longrightarrow \bf x =  \frac{32}{4}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \displaystyle \longrightarrow \bf x = 8 \: cm \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \purple{ \boxed{ \begin{array}{l} \textsf{Breadth of rectangle  = x = 8  cm}\\  \\  \textsf{Length of rectangle  = x + 4 = 8 + 4 = 12 \: cm }\end{array}}}

\red{ \underline{\underline{ \textbf{Case 2 : }}}}

Let side of square as x .

 \red{ \underline{\underline{ \textbf{According to question : }}}}

 \textsf{Perimeter of square = Perimeter of rectangle} \\  \\ \longrightarrow  \sf{4 \times side = 40 \: cm} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \longrightarrow  \sf{4 \times x = 40} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \longrightarrow  \sf{x =  \frac{40}{4} } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \longrightarrow  \sf{x = 10 \: cm} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \textsf{Side of square = 10 cm}

 \textsf{Area of square = side$\times$side} \\  \\ \textsf{Area of square = 10$\times$10} \:  \:  \:  \:  \\  \\ \textsf{Area of square = 100 \: ${ \sf cm}^{2}$ }

\purple{ \boxed{ \begin{array}{l} \textsf{Area of square = 100 \:  $ \sf{cm}^{2}$}\end{array}}}

Similar questions