Math, asked by kococoblingsell8196, 5 months ago

The length of a rectangle is 5 cm less than twice its breadth . if the perimeter of rectangle is 80 cm , find its area . solve equation by the cross multiplication method.

Answers

Answered by EliteZeal
56

\huge{\blue{\bold{\underline{\underline{Answer :}}}}}

 \:\:

 \large{\green{\underline \bold{\tt{Given :-}}}}

 \:\:

  • The length of a rectangle is 5 cm less than twice its breadth

 \:\:

  • Perimeter of rectangle is 80 cm

 \:\:

 \large{\red{\underline \bold{\tt{To \: Find :-}}}}

 \:\:

  • Its Area

 \:\:

\large{\orange{\underline{\tt{Solution :-}}}}

 \:\:

  • Let the length of rectangle be "x"

  • Let the breadth of rectangle be "y"

 \:\:

 \purple{\underline \bold{According \: to \: the \ question :}}

 \:\:

The length of a rectangle is 5 cm less than twice its breadth

 \:\:

➜ x = 2y - 5

 \:\:

➜ x - 2y + 5 = 0 ------- (1)

 \:\:

Also, perimeter of rectangle is 80 cm

 \:\:

 \underline{\bold{\texttt{Perimeter of rectangle :}}}

 \:\:

➠ 2( length + breadth ) --------- (2)

 \:\:

 \underline{\bold{\texttt{Perimeter of given rectangle :}}}

 \:\:

  • length = x

  • breadth = y

 \:\:

⟮ Putting these values in (2) ⟯

 \:\:

➠ 2( length + breadth )

 \:\:

➜ 2(x + y) = 80

 \:\:

➜ x + y = 40

 \:\:

➜ x + y - 40 = 0 ------- (3)

 \:\:

 \underline{\bold{\texttt{Cross multiplication :}}}

 \:\:

For,

 \:\:

 \bf a_1x + b_1y + c_1 = 0

 \bf a_2x + b_2x + c_2 = 0

 \:\:

 \footnotesize{ \sf \longmapsto \dfrac { x } { b_1c_2 - b_2c_1 } = \dfrac { y } { c_1a_2 - c_2a_1 } = \dfrac { 1 } { b_2a_1 - b_1a_2 }---(4)}

 \:\:

For ,

 \:\:

x - 2y + 5 = 0

x + y - 40 = 0

 \:\:

  •  \sf a_1 = 1

  •  \sf b_1 = -2

  •  \sf c_1 = 5

  •  \sf a_2 = 1

  •  \sf b_2 = 1

  •  \sf c_2 = -40

 \:\:

⟮ Putting these values in (4) ⟯

 \:\:

 \footnotesize{ \sf \longmapsto \dfrac { x } { b_1c_2 - b_2c_1 } = \dfrac { y } { c_1a_2 - c_2a_1 } = \dfrac { 1 } { b_2a_1 - b_1a_2 }}

 \:\:

\footnotesize{ \sf \longmapsto \dfrac { x } { (-2 × -40) - (1 × 5)} = \dfrac { y } { (5 × 1) - (-40 × 1) } = \dfrac { 1 } { (1 × 1) - (-2 × 1) }}

 \:\:

\footnotesize{ \sf \longmapsto \dfrac { x } { (80) - (5)} = \dfrac { y } { (5) - (-40) } = \dfrac { 1 } { (1) - (-2) }}

 \:\:

\footnotesize{ \sf \longmapsto \dfrac { x } { 75} = \dfrac { y } { 45 } = \dfrac { 1 } { 3 }}

 \:\:

We got ,

 \:\:

  •  \sf \dfrac { x } { 75} = \dfrac { 1 } { 3 } ------ (5)

 \:\:

  •  \sf \dfrac { y } { 45 } = \dfrac { 1 } { 3 } ------- (6)

 \:\:

⟮ Solving equation (5) ⟯

 \:\:

 \sf \dfrac { x } { 75} = \dfrac { 1 } { 3 }

 \:\:

 \sf x = \dfrac { 75 } { 3 }

 \:\:

➨ x = 25

 \:\:

  • Hence length of rectangle is 25 cm

 \:\:

⟮ Solving equation (6) ⟯

 \:\:

 \sf \dfrac { y } { 45 } = \dfrac { 1 } { 3 }

 \:\:

 \sf y = \dfrac { 45 } { 3 }

 \:\:

➨ y = 15

 \:\:

  • Hence breadth of rectangle is 15 cm

 \:\:

 \underline{\bold{\texttt{Area of rectangle :}}}

 \:\:

➠ Length × Breadth ----- (7)

 \:\:

 \underline{\bold{\texttt{Area of given rectangle :}}}

 \:\:

  • Length = 25 cm

  • Breadth = 15 cm

 \:\:

⟮ Putting these values in (7) ⟯

 \:\:

➠ Length × Breadth

 \:\:

➜ 25 × 15

 \:\:

➨ 375 sq cm

 \:\:

  • Hence area of rectangle is 375 sq. cm
Answered by Ranveerx107
6

\huge{\blue{\bold{\underline{\underline{Answer :}}}}}

 \:\:

 \large{\green{\underline \bold{\tt{Given :-}}}}

 \:\:

  • The length of a rectangle is 5 cm less than twice its breadth

 \:\:

  • Perimeter of rectangle is 80 cm

 \:\:

 \large{\red{\underline \bold{\tt{To \: Find :-}}}}

 \:\:

  • Its Area

 \:\:

\large{\orange{\underline{\tt{Solution :-}}}}

 \:\:

  • Let the length of rectangle be "x"

  • Let the breadth of rectangle be "y"

 \:\:

 \purple{\underline \bold{According \: to \: the \ question :}}

 \:\:

The length of a rectangle is 5 cm less than twice its breadth

 \:\:

➜ x = 2y - 5

 \:\:

➜ x - 2y + 5 = 0 ------- (1)

 \:\:

Also, perimeter of rectangle is 80 cm

 \:\:

 \underline{\bold{\texttt{Perimeter of rectangle :}}}

 \:\:

➠ 2( length + breadth ) --------- (2)

 \:\:

 \underline{\bold{\texttt{Perimeter of given rectangle :}}}

 \:\:

length = x

breadth = y

 \:\:

⟮ Putting these values in (2) ⟯

 \:\:

➠ 2( length + breadth )

 \:\:

➜ 2(x + y) = 80

 \:\:

➜ x + y = 40

 \:\:

➜ x + y - 40 = 0 ------- (3)

 \:\:

 \underline{\bold{\texttt{Cross multiplication :}}}

 \:\:

For,

 \:\:

 \bf a_1x + b_1y + c_1 = 0

 \bf a_2x + b_2x + c_2 = 0

 \:\:

 \footnotesize{ \sf \longmapsto \dfrac { x } { b_1c_2 - b_2c_1 } = \dfrac { y } { c_1a_2 - c_2a_1 } = \dfrac { 1 } { b_2a_1 - b_1a_2 }---(4)}

 \:\:

For ,

 \:\:

x - 2y + 5 = 0

x + y - 40 = 0

 \:\:

 \sf a_1 = 1

 \sf b_1 = -2

 \sf c_1 = 5

 \sf a_2 = 1

 \sf b_2 = 1

 \sf c_2 = -40

 \:\:

⟮ Putting these values in (4) ⟯

 \:\:

 \footnotesize{ \sf \longmapsto \dfrac { x } { b_1c_2 - b_2c_1 } = \dfrac { y } { c_1a_2 - c_2a_1 } = \dfrac { 1 } { b_2a_1 - b_1a_2 }}

 \:\:

\footnotesize{ \sf \longmapsto \dfrac { x } { (-2 × -40) - (1 × 5)} = \dfrac { y } { (5 × 1) - (-40 × 1) } = \dfrac { 1 } { (1 × 1) - (-2 × 1) }}

 \:\:

\footnotesize{ \sf \longmapsto \dfrac { x } { (80) - (5)} = \dfrac { y } { (5) - (-40) } = \dfrac { 1 } { (1) - (-2) }}

 \:\:

\footnotesize{ \sf \longmapsto \dfrac { x } { 75} = \dfrac { y } { 45 } = \dfrac { 1 } { 3 }}

 \:\:

We got ,

 \:\:

 \sf \dfrac { x } { 75} = \dfrac { 1 } { 3 } ------ (5)

 \:\:

 \sf \dfrac { y } { 45 } = \dfrac { 1 } { 3 } ------- (6)

 \:\:

⟮ Solving equation (5) ⟯

 \:\:

 \sf \dfrac { x } { 75} = \dfrac { 1 } { 3 }

 \:\:

 \sf x = \dfrac { 75 } { 3 }

 \:\:

➨ x = 25

 \:\:

Hence length of rectangle is 25 cm

 \:\:

⟮ Solving equation (6) ⟯

 \:\:

 \sf \dfrac { y } { 45 } = \dfrac { 1 } { 3 }

 \:\:

 \sf y = \dfrac { 45 } { 3 }

 \:\:

➨ y = 15

 \:\:

Hence breadth of rectangle is 15 cm

 \:\:

 \underline{\bold{\texttt{Area of rectangle :}}}

 \:\:

➠ Length × Breadth ----- (7)

 \:\:

 \underline{\bold{\texttt{Area of given rectangle :}}}

 \:\:

Length = 25 cm

Breadth = 15 cm

 \:\:

⟮ Putting these values in (7) ⟯

 \:\:

➠ Length × Breadth

 \:\:

➜ 25 × 15

 \:\:

➨ 375 sq cm

 \:\:

  • Hence area of rectangle is 375 sq. cm
Similar questions