Math, asked by tulsibairagi90, 5 months ago

The length of a rectangle is 5 cm. more than it's breadth. If the perimeter of the
rectangle is 46 cm
Find its length and breadth ?




pls fast and messages me ​

Answers

Answered by BrainlyShadow01
8

To Find:-

  • Find its length and breadth.

Given:-

  • Length of a rectangle is 5 cm more than it's breadth.
  • If the perimeter of the  rectangle is 46 cm.

Solution:-

Let the length be " x + 5 "

The breadth be " x "

\tt \implies { \: Perimeter \: \: of \: rectangle \:   =  \: 2 ( \: l \: + \: b \: ) \:  }

\tt \implies { \: 46 \:  =  \: 2 ( \: x \: + \: 5 \: + \: x \: ) \:  }

\tt \implies { \: 46 \:  =  \: 2 ( \: 2x \: + \: 5 \: ) \:  }

\tt \implies { \: 46 \:  =  \: 4x \: + \: 10 \:  }

\tt \implies { \: 46 \: - \: 10 \: =  \: 4x \:  }

\tt \implies { \: 4x \:  =  \: 36 \:  }

\tt \implies { \: x \:  = \:  \cancel\frac{36}{4}  \:  }

\tt \implies \boxed{{ \: x \:  =  \: 9cm \:  }}

So,

\tt \implies { \: Breadth \:  =  \: 9cm \:  }

\tt \implies { \: Length \:  =  \: 14cm \:  }

Answered by HA7SH
88

Step-by-step explanation:

______________________________

 \large\bf{\underbrace{\underline{Question:-}}}

:\Longrightarrow ● The length of a rectangle is 5 cm. more than it's breadth. If the perimeter of the rectangle is 46 cm. Find its length and breadth ?

\sf To\ find = \begin{cases} \sf{The\ length\ of\ the\ rectangle.} \\ \\ \sf{The\ breadth\ of\ the\ rectangle.} \end{cases}

\sf Given = \begin{cases} \sf{The\ length\ of\ rectangle\ is\ 5cm\ more\ than\ it's\ breadth.} \\ \\ \sf{The\ perimeter\ of\ the\ rectangle\ is\ 46cm.} \end{cases}

 \large\bf{\underbrace{\underline{Solution:-}}}

\sf We\ have = \begin{cases} \sf{Let\ the\ breadth\ of\ the\ rectangle\ be\ x.} \\ \\ \sf{Then,\ the\ length\ of\ the\ rectangle\ be\ x\ +\ 5cm.} \end{cases}

 \large\bf{\underbrace{\underline{According\ to\ the\ question:-}}}

\sf Value\ of\ x = \begin{cases} \sf{●\ Perimeter\ of\ rectangle\ =\ 2(length\ +\ breadth)} \\ \\ \sf{●\ Perimeter_{(rectangle)}\ =\ 46\ =\ 2(x\ +\ 5\ +\ x)} \\ \\ \sf{●\ Perimeter_{(rectangle)}\ =\ 46\ =\ 2(2x\ +\ 5)} \\ \\ \sf{●\ Perimeter_{(rectangle)}\ =\ 46\ =\ 4x\ +\ 10} \\ \\ \sf{●\ Perimeter_{(rectangle)}\ =\ 46\ -\ 10\ =\ 4x} \\ \\ \sf{●\ Perimeter_{(rectangle)}\ =\ 4x\ =\ 36} \\ \\ \sf{●\ Perimeter_{(rectangle)}\ =\ x\ =\ \dfrac{36}{4}} \\ \\ \sf{●\ Perimeter_{(rectangle)}\ =\ x\ =\ 9cm.} \end{cases}

 \large\bf{\underbrace{\underline{Hence:-}}}

 \sf\purple{●\ Breadth_{(rectangle)}} \sf{=\ x\ =\ 9cm.}

 \sf\purple{●\ Length_{(rectangle)}} \sf{=\ x\ +\ 5\ =\ 9\ +\ 5\ =\ 14cm.}

______________________________

Similar questions