Math, asked by ASHIISH9974, 2 months ago

the length of a rectangle is 5 metres less than twise the breadth. If the perimeter is50 metres, find the length and breadth of the rectangle

Answers

Answered by sonalipalsp13
1

Step-by-step explanation:

Hope this will help you

Thank you

Attachments:
Answered by BrainlyRish
18

Proper Question :

⠀⠀⠀⠀⠀▪︎ The length of a rectangle is 5 metres less than twice the breadth. If the perimeter is 50 meters , find the length and breadth of the rectangle .

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Given : The length of a rectangle is 5 metres less than twice the breadth & the perimeter is 50 meters .

Exigency To Find : The Length & Breadth of Rectangle .

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

❍ Let's Consider the Breadth be x m

⠀⠀⠀⠀Given that ,

⠀⠀⠀⠀⠀▪︎⠀⠀ The length of a rectangle is 5 metres less than twice the breadth .

\qquad:\implies \sf Length _{(Rectangle)} \:= \: 2 \times Breadth \: - 5 \:m \:\\

\qquad:\implies \sf Length _{(Rectangle)} \:= \: 2 \times x \: - 5 \:\\

\qquad:\implies \sf Length _{(Rectangle)} \:= \: 2x \: - 5 \:\\

\qquad \implies \pmb{\underline{\purple{\:Length _{(Rectangle)} \:= \: (2x \: - 5)\:m \:\: }} }\:\:\bigstar \\

\dag\:\:\sf{ As,\:We\:know\:that\::}\\\\\qquad\bigstar\:\:\bf Perimeter\:of\:Rectangle\:: \\\\

\qquad \dag\:\:\bigg\lgroup \sf{Perimeter _{(Rectangle)} \:: 2( l +  b)\:\:unit }\bigg\rgroup \\\\

⠀⠀⠀⠀⠀Here , l is the Length of Rectangle, b is the Breadth of Rectangle & it is already Given that Perimeter of Rectangle is 50 m .

\qquad:\implies \sf Perimeter _{(Rectangle)} \:=\: 2( l +  b) \\

⠀⠀⠀⠀⠀⠀\underline {\boldsymbol{\star\:Now \: By \: Substituting \: the \: known \: Values \::}}\\

\qquad:\implies \sf Perimeter _{(Rectangle)} \:=\: 2( l +  b) \\

\qquad:\implies \sf 50 \:=\: 2\bigg( (2x- 5)  +  x \bigg) \\

\qquad:\implies \sf 50 \:=\: 2(2x- 5)  +  2(x)  \\

\qquad:\implies \sf 50 \:=\: 4x- 10  +  2x  \\

\qquad:\implies \sf 50 \:=\: 4x  +  2x - 10 \\

\qquad:\implies \sf 50 \:=\: 6x - 10 \\

\qquad:\implies \sf 50 + 10\:=\: 6x \\

\qquad:\implies \sf 60\:=\: 6x  \\

\qquad:\implies \sf 6x\:=\: 60 \\

\qquad:\implies \sf 6x\:=\: 60 \\

\qquad:\implies \sf x\:=\: \dfrac{60}{6} \\

\qquad:\implies \sf x\:=\: \cancel {\dfrac{60}{6}} \\

\qquad:\implies \sf x\:=\: 10\\

\qquad :\implies \pmb{\underline{\purple{\:x = 10\:m }} }\:\bigstar \\

Therefore,

⠀⠀⠀⠀⠀▪︎⠀⠀The Length of Rectangle is x = 10 m

⠀⠀⠀⠀⠀▪︎⠀⠀The Breadth of Rectangle is (2x - 5) = [2 (10) - 5 ] = 20 - 5 = 15 m

⠀⠀⠀⠀⠀\therefore {\underline{ \sf \:Hence,\:\:Length \:and\:Breadth \:of\:Rectangle \:are\:\bf 10 \:m\:\: \sf \& \: \bf 15 \: m \:\:\sf ,respectively. \:}}\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

\large {\boxed{\sf{\mid{\overline {\underline {\star More\:To\:know\::}}}\mid}}}\\\\

\qquad \leadsto \sf Area_{(Rectangle)} = Length \times Breadth

\qquad \leadsto \sf Perimeter _{(Rectangle)} = 2 (Length + Breadth)

\qquad \leadsto \sf Area_{(Square)} = Side \times Side

\qquad \leadsto \sf Perimeter _{(Square)} = 4 \times Side

\qquad \leadsto \sf Area_{(Trapezium)} = \dfrac{1}{2} \times Height \times (a + b )

\qquad \leadsto \sf Area_{(Parallelogram)} = Base \times Height

\qquad \leadsto \sf Area_{(Triangle)} = \dfrac{1}{2} \times Base \times Height

\qquad \leadsto \sf Area_{(Rhombus)} = \dfrac{1}{2} \times Diagonal _{1}\times Diagonal_{2}

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Similar questions