Math, asked by alizahnjan, 1 month ago

The length of a rectangle is 5cm mare than it's breadth of the perimeter of the rectangle is 40 cm find its dimensions
step by step please help​

Answers

Answered by abhi569
82

Answer:

length = 12.5cm   ;  breadth = 7.5 cm

Step-by-step explanation:

Let the breadth of the rectangle be 'x'.

∴ Length = 5 cm more than breadth

               = 5 cm more than x

                = x + 5

Given, perimeter of the rectangle is 40 cm

 ⇒ perimeter = 2(length + breadth)

 ⇒  40 = 2(x+5 + x)

 ⇒ 40 = 2(2x + 5)

 ⇒ 40 = 4x + 10

 ⇒ 40 - 10 = 4x

 ⇒ 30 = 4x

 ⇒ 30/4 = x

 ⇒ 7.5 = x

Length of the rectangle is x + 5 = 7.5 + 5 = 12.5 cm

Breadth = x = 7.5 cm

Answered by Anonymous
96

\large\underline{\underline{\maltese{\pmb{\sf{\red{ \: Given :-}}}}}}

  • ➬ Length of a rectangle is 5cm more than it's breadth.
  • ➬ Perimeter is 40cm .

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

\large\underline{\underline{\maltese{\pmb{\sf{\red{ \: To  \: Find :-}}}}}}

  • ➬ Find the dimensions (i.e, Length and breadth) .

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

\large\underline{\underline{\maltese{\pmb{\sf{\red{ \:  Solution:-}}}}}}

We know that :

\large{\blue{\bigstar{\underline{\boxed{\pink{\sf{Perimeter = 2(Length  +  Breadth)}}}}}}}

Here :

  • ➳ Perimeter = 40cm
  • ➳ Length = x + 5
  • ➳ Breadth = x

Now the Dimensions :

\large{:\longmapsto\sf{Perimeter = 2(L + B)}}

\large{:\longmapsto\sf{ \:  \:  \:  \:  40 =  2(x + 5 + x)}}

\large{:\longmapsto\sf{ \:  \:  \:  \:  40 =   2(2x + 5 )}}

\large{:\longmapsto\sf{ \:  \:  \:  \:  40  =  (4x + 10)  }}

\large{:\longmapsto\sf{ \:  \:  \:  \:  40   - 10=  4x   }}

\large{:\longmapsto\sf{ \:  \:  \:  \:  30=  4x   }}

\large{:\longmapsto\sf{ \:  \:  \:  \:  \cancel \frac{30}{4} =  x   }}

{\large\red\dashrightarrow{\orange{ \underline{\boxed{\sf{X = 7.5}}}}}}

Hence :

{\large{\green{\leadsto{\sf{Length = x + 5 = 7.5 + 5 = 12.5 \: cm}}}}}

{\large{\green{\leadsto{\sf{Breadth = x = 7.5  \: cm}}}}}

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

{\large{\blue{\bf{❤∣∣ItzNobita50∣∣❤}}}}

Similar questions