Math, asked by satyamsinghsrinet28, 10 months ago

The length of a rectangle is 5cm more than its breadth . If the perimeter and f the rectangle is 50cm the what is area ​

Answers

Answered by sunny0909
49

let be

breadth=x

length=x+5

perimeter of rectangle=2(l+b)

50cm=2(x+5+x)

50cm/2=x+5x

25cm=2x+5

25cm-5=2x

20cm=2x

20cm/2=x

10cm=x

now,

l=x+5

=10cm+5

=15cm

b=x

=10cm

then,

area of rectangle=l×b

=15cm×10cm

150m^2

Answered by EliteSoul
282

AnswEr:-

Area of rectangle = 150 cm²

Step-by-step-explanation :-

*Reference of diagram is given below:-

\setlength{\unitlength}{0.78 cm}\begin{picture}(12,4)\thicklines\put(5.6,9.1){$A$}\put(5.5,5.8){$B$}\put(11.1,5.8){$C$}\put(11.05,9.1){$D$}\put(4.5,7.5){$B\:cm$}\put(8.1,5.1){$(B + 5) \:cm$}\put(11.5,7.5){$B \:cm$}\put(8.1,9.5){$(B + 5)\:cm$}\put(6,6){\line(1,0){5}}\put(6,9){\line(1,0){5}}\put(11,9){\line(0,-1){3}}\put(6,6){\line(0,1){3}}\end{picture}

Given :-

  • Length = Breadth + 5 cm
  • Perimeter = 50 cm

To find :-

  • Area of rectangle = ?

Solution :-

Let the breadth be B cm.

•°• Length = (B + 5) cm

As we know,

\star\:\large{\boxed{\sf{Perimeter \: of \: rectangle = 2(l + b) }}}

⇒ 50 = 2(B + 5 + B)

⇒ 50 = 2(2B + 5)

⇒ 50 = 4B + 10

⇒ 4B = 50 - 10

⇒ 4B = 40

⇒ B = 40/4

⇒ B = 10 cm

Dimensions:-

◗ Length = B + 5 = 10 + 5 = 15 cm

◗ Breadth = B = 10 cm

\rule{200}{1}

Now we know,

\star\:\large{\boxed{\sf{Area \: of \: rectangle = l \times b }}}

  • Putting values :-

➩ Area of rectangle = (15 × 10) cm²

➩ Area of rectangle = 150 cm²

\therefore\underline{\textsf{Area \: of \: that \: rectangle = {\textbf{$150 \: cm^2 $}}}}

Similar questions