Math, asked by Anonymous, 5 months ago

the length of a rectangle is 8m more than its breadth if its perimeter is 128m, find its length , breadth and Area

Answers

Answered by shivakumar0820
0

Answer:

brainlinest plzzzz

Step-by-step explanation:

Let breadth be b

Length be l

Given l = b+ 8  

Perimeter = 2(l+b) = 128

l + b = 64

b+8+b = 64

2b = 56

b = 28

l = 8+28 = 36

Answered by Anonymous
1

Question:-

the length of a rectangle is 8m more than its breadth if its perimeter is 128m, find its length , breadth and Area

Answer:-

The length of Rectangle is 36 m

The breadth of rectangle is 28 m

The area of Given rectangle is 1008 m².

To find:-

Length and breadth of rectangle

Area of rectangle

Solution:-

Let the breadth be x

Length = 8 + x

Perimeter = 128 m

\boxed{ \large{ \mathfrak{perimeter = 2(l + b)}}}

According to question,

\large{ \tt: \implies \: \: \: \: \: 2(8 + x + x) = 128}

\begin{gathered} \large{ \tt: \implies \: \: \: \: \: 8 + 2x = \frac{128}{2} } \\ \end{gathered}:

\large{ \tt: \implies \: \: \: \: \: 8 + 2x = 64}

\large{ \tt: \implies \: \: \: \: \: 2x = 64 - 8}:

\large{ \tt: \implies \: \: \: \: \: 2x = 56}</p><p>

\large{ \tt: \implies \: \: \: \: \: x = 28}</p><p>

The breadth of rectangle is 28 m

Length = 8 + x = 28 + 8 = 36 m

\large{ \boxed{ \mathfrak{area = l \times b}}}</p><p>

\large{ \tt: \implies \: \: \: \: \: area = 28 \times 36}

\large{ \tt: \implies \: \: \: \: \: area = 1008 \: {m}^{2} }</p><p>

The area of Given rectangle is 1008 m².

Similar questions