Math, asked by Anonymous, 5 months ago

the length of a rectangle is 8m more than its breadth if its perimeter is 128m, find its length , breadth and Area

Answers

Answered by Anonymous
2

Step-by-step explanation:

Question:-

the length of a rectangle is 8m more than its breadth if its perimeter is 128m, find its length , breadth and Area

Answer:-

The length of Rectangle is 36 m

The breadth of rectangle is 28 m

The area of Given rectangle is 1008 m².

To find:-

Length and breadth of rectangle

Area of rectangle

Solution:-

Let the breadth be x

Length = 8 + x

Perimeter = 128 m

\boxed{ \large{ \mathfrak{perimeter = 2(l + b)}}}

According to question,

\large{ \tt: \implies \: \: \: \: \: 2(8 + x + x) = 128}

\begin{gathered} \large{ \tt: \implies \: \: \: \: \: 8 + 2x = \frac{128}{2} } \\ \end{gathered}:

\large{ \tt: \implies \: \: \: \: \: 8 + 2x = 64}

\large{ \tt: \implies \: \: \: \: \: 2x = 64 - 8}

\large{ \tt: \implies \: \: \: \: \: 2x = 56}

\large{ \tt: \implies \: \: \: \: \: x = 28}

The breadth of rectangle is 28 m

Length = 8 + x = 28 + 8 = 36 m

\large{ \boxed{ \mathfrak{area = l \times b}}}

\large{ \tt: \implies \: \: \: \: \: area = 28\times 36}

\large{ \tt: \implies \: \: \: \: \: area = 1008 \: {m}^{2} }

The area of Given rectangle is 1008 m².

Answered by djena0789
1

Answer:

Question:-

the length of a rectangle is 8m more than its breadth if its perimeter is 128m, find its length , breadth and Area

Answer:-

The length of Rectangle is 36 m

The breadth of rectangle is 28 m

The area of Given rectangle is 1008 m².

To find:-

Length and breadth of rectangle

Area of rectangle

Solution:-

Let the breadth be x

Length = 8 + x

Perimeter = 128 m

\boxed{ \large{ \mathfrak{perimeter = 2(l + b)}}}

perimeter=2(l+b)

According to question,

\large{ \tt: \implies \: \: \: \: \: 2(8 + x + x) = 128}:⟹2(8+x+x)=128

\begin{gathered}\begin{gathered} \large{ \tt: \implies \: \: \: \: \: 8 + 2x = \frac{128}{2} } \\ \end{gathered}:\end{gathered}

:⟹8+2x=

2

128

:

\large{ \tt: \implies \: \: \: \: \: 8 + 2x = 64}:⟹8+2x=64

\large{ \tt: \implies \: \: \: \: \: 2x = 64 - 8}:⟹2x=64−8

\large{ \tt: \implies \: \: \: \: \: 2x = 56}:⟹2x=56

\large{ \tt: \implies \: \: \: \: \: x = 28}:⟹x=28

The breadth of rectangle is 28 m

Length = 8 + x = 28 + 8 = 36 m

\large{ \boxed{ \mathfrak{area = l \times b}}}

area=l×b

\large{ \tt: \implies \: \: \: \: \: area = 28\times 36}:⟹area=28×36

\large{ \tt: \implies \: \: \: \: \: area = 1008 \: {m}^{2} }:⟹area=1008m

2

The area of Given rectangle is 1008

Step-by-step explanation:

꧁༒☬Ðєαтн☬༒꧂

Similar questions