Math, asked by Anonymous, 3 months ago

the length of a rectangle is 8m more than its breadth if its perimeter is 128m, find its length , breadth and Area

Answers

Answered by Anonymous
2

Answer:

Question:-

the length of a rectangle is 8m more than its breadth if its perimeter is 128m, find its length , breadth and Area

Answer:-

The length of Rectangle is 36 m

The breadth of rectangle is 28 m

The area of Given rectangle is 1008 m².

To find:-

Length and breadth of rectangle

Area of rectangle

Solution:-

Let the breadth be x

Length = 8 + x

Perimeter = 128 m

\boxed{ \large{ \mathfrak{perimeter = 2(l + b)}}}

According to question,

\large{ \tt: \implies \: \: \: \: \: 2(8 + x + x) = 128}

\begin{gathered} \large{ \tt: \implies \: \: \: \: \: 8 + 2x = \frac{128}{2} } \\ \end{gathered}:

\large{ \tt: \implies \: \: \: \: \: 8 + 2x = 64}

\large{ \tt: \implies \: \: \: \: \: 2x = 64 - 8}

\large{ \tt: \implies \: \: \: \: \: 2x = 56}

\large{ \tt: \implies \: \: \: \: \: x = 28}

The breadth of rectangle is 28 m

Length = 8 + x = 28 + 8 = 36 m

\large{ \boxed{ \mathfrak{area = l \times b}}}

\large{ \tt: \implies \: \: \: \: \: area = 28\times 36}

\large{ \tt: \implies \: \: \: \: \: area = 1008 \: {m}^{2} }

The area of Given rectangle is 1008 m².

Answered by iamgojoof6eyes
0

Answer:

Length = 36m

Breadth = 28m

Area = 1008m²

Step-by-step explanation:

Let the breadth of the rectangle be x

Then, the length is 8 + x.

Now, Perimeter of rectangle = 2 (l + b)

⇒ 128m = 2 (8 + x + x)

⇒ 128 = 2 (8 + 2x)

⇒ 128 = 16 + 4x

⇒ 4x = 128 - 16

⇒ 4x = 112

⇒ x = 112/4

⇒ x = 28m

Breadth = x = 28m

Length = 8 + x = 28 + 8 = 36m

Now,

Area = l × b

        = 36 × 28 = 1008m²

Similar questions