Math, asked by Vaibhavi000, 3 months ago

The length of a rectangle is four times its width. If the area is 100 m2 what is the length of the rectangle?


don't spam

Answers

Answered by ItzFranklinRahul
6

\huge\mathbb{\pink{QUESTION ♡- }}\star{}

The length of a rectangle is four times its width. If the area is 100 m2 what is the length of the rectangle?

\huge\mathcal{\purple{A}}{\mathcal{\green{N}}}{\mathtt{\pink{S}}}{\mathcal{\blue{W}}}{\mathcal{\purple{E}}}{\mathcal{\green{R}}}{\pink{!}}{\blue{!}}

Let, the width of the rectangle be (b) = x

The, Length of the rectangle (l) = 4x

Area  \: of  \: the \:  rectangle = length × breadth \\  \\ ⟹100 = 4x \times x \\ ⟹100 = 4 {x}^{2}  \\ ⟹ \frac{100}{4}  =  {x}^{2}  \\ ⟹25 =  {x}^{2}  \\ ⟹ \sqrt{25}  = x \\ ∴x = 5

Now  \: length  \: of \:  rectangle = 4x  \\ = 4 × 5 \\ </p><p>= 20 \: m

Answered by Anonymous
9

AnswEr-:

  • \sf{\underline{\red{\dag{ \:Length \:of\:Rectangle\:20\:m\:.}}}}\\

Explanation-:

\mathrm {\bf{ Given-:}}\\

  • The length of a rectangle is four times its width.

  • The Area of Rectangle is 100 m².

\mathrm {\bf{ To\:Find -:}}\\

  • The Length of Rectangle.

\sf{\bf{\dag{ Solution \:of\:Question -:}}}\\

\mathrm {\bf{Let's \: Assume-:}}\\

  • The width of Rectangle be x m

Then Given that ,

  • The length of a rectangle is four times its width.

Then ,

  • Length of Rectangle is 4x m

Therefore,

  •  \mathrm{\bf{\purple{Dimensions \:\: -:}}} \begin{cases} \sf{\blue{The\:Length \:of\:the\:Rectangle \:is\:= \frak{4x\:m}}} &amp; \\\\ \sf{\red{Width  \:of\:Rectangle \:is \:=\:\frak{x \: m}}}\end{cases} \\\\

\underbrace {\mathrm { \bf{ Understanding \:of\:Concept \:-:}}}\\

  • We have to find the Length of Rectangle when the Area and some word is given for Length and Breadth of Rectangle .

  • Firstly put the assumed value in the Formula for Area of Rectangle then by doing this ,

  • We can get the Length and Breadth of Rectangle.

____________________________________________________

\sf{\bf{\dag{Finding \:Length \:of\:Rectangle -:}}}\\

As , We Know that ,

  • \underline{\boxed{\star{\sf{\red{ Area_{(Rectangle)}  \: = \: Length \times Width \:sq.units}}}}}

  •  \mathrm{\bf{\purple{Here \:\: -:}}} \begin{cases} \sf{\blue{The\:Length \:of\:the\:Rectangle \:is\:= \frak{4x\:m}}} &amp; \\\\ \sf{\red{Width  \:of\:Rectangle \:is \:=\:\frak{x \: m}}}\end{cases} \\\\

Now by Putting known Values in Formula for Area of Rectangle-:

  • \longmapsto {\mathrm { 4x \times x = 100 m^{2}  }}\\

  • \longmapsto {\mathrm { x \times x = \dfrac{100}{4}   }}\\

  • \longmapsto {\mathrm { x \times x = \dfrac{\cancel {100}}{\cancel {4}}   }}\\

  • \longmapsto {\mathrm { x \times x = 25  }}\\

  • \longmapsto {\mathrm { x^{2} = 25  }}\\

  • \longmapsto {\mathrm { x  = \sqrt {25}  }}\\

  • \underline {\boxed{\pink{\frak { x  = 5 m  }}}}\\

Now , By Substituting X = 5 -:

  •  \mathrm{\bf{\purple{Dimensions \:\: -:}}} \begin{cases} \sf{\blue{The\:Length \:of\:the\:Rectangle \:is\:= \frak{4x= 4 \times 5 =20\:m}}} &amp; \\\\ \sf{\red{Width  \:of\:Rectangle \:is \:=\:\frak{x \:=\:5 m}}}\end{cases} \\\\

Hence ,

  • \sf{\underline{\red{\dag{ \:Length \:of\:Rectangle\:20\:m\:.}}}}\\

_________________________________________

\boxed {\bf{\large {\sf |\:\:{\underline { More \:To\; Know -:}}\:\:| }}}\\

  • \underline{\mathrm {Area\:of\:Rectangle \:-: Length \: \times Breadth \:sq.units}}

  • \underline{\mathrm {Perimeter \:of\:Rectangle \:-: 2  (  Length \: + Breadth )\:units}}

  • \underline{\mathrm {Area\:of\: Square \:-: Side \: \times Side \:sq.units}}

  • \underline{\mathrm {Perimeter \:of\: Square \:-: 4  \: \times Side \:units}}

___________________________________________

Similar questions