the length of a rectangle is greater than the breath by 3 CM if the length is increased by 9 cm and the breadth is reduced by 5 centimetre the area remains the same find the dimensions of the rectangle
Answers
Answered by
540
Let the breadth be x cm.
Then the length will be (x+3) cm.
Area of the rectangle = x(x+3) cm^2. ---------------- (1)
Given that length is increased by 9cm = x + 3 + 9 = x + 12 cm.
Given that breadth is reduced by 5cm = x - 5 cm.
Area of the rectangle = (x+12)(x-5). -------------- (2)
On solving (1) and (2), we get
x(x+3) = (x+12)(x-5)
x^2 + 3x = x^2 + 7x - 60
4x = 60
x = 15.
Breadth = 15cm.
Length = 15 + 3 = 18 cm.
Then the length will be (x+3) cm.
Area of the rectangle = x(x+3) cm^2. ---------------- (1)
Given that length is increased by 9cm = x + 3 + 9 = x + 12 cm.
Given that breadth is reduced by 5cm = x - 5 cm.
Area of the rectangle = (x+12)(x-5). -------------- (2)
On solving (1) and (2), we get
x(x+3) = (x+12)(x-5)
x^2 + 3x = x^2 + 7x - 60
4x = 60
x = 15.
Breadth = 15cm.
Length = 15 + 3 = 18 cm.
rahul362:
thanks for answering
Answered by
231
Hey!!! Your answer is in the pic.....
Attachments:
Similar questions