Math, asked by 234264tcs, 3 months ago

the length of a rectangle is twice it's breadth .If the peremiter is 72 meter , find the length and breadth of the the rectangle ​

Answers

Answered by bagkakali
1

Answer:

let the breadth of the rectangle is x m

so, length= 2x m

perimeter=2(length+breadth)=72

=> 2(2x+x)=72

=> 2.3x=72

=> 6x=72

=> x=72/6=12

so,breadth of the rectangle is 12 m

and length =2×12m=24 m

Answered by MrHyper
73

\Huge\rm\orange{answeR}

{}

\bf{{\underline{Given}}:}

  • The Length of a rectangle is twice it's breadth
  • Perimeter of the rectangle is 72m

\bf{{\underline{To~find}}:}

  • The Length and breadth of the rectangle

\bf{{\underline{Solution}}:}

 \sf Length = 2 \times breadth \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \sf Let \: length \: and \: breadth \: be \:  \:  x\:  \: and \:  \: y \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf \implies x = 2y \\  \\  \sf Perimeter \: of \: a \: rectangle = 2(l + b) ~~~~~~~~~~~~~~~~~~ \:  \:  \:  \:  \:  \:  \:  \: \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \implies \sf 2(x + y) = 72 \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \implies \sf 2(2y + y) = 72 \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \implies \sf 2(3y) = 72 \\  \:  \:  \:  \:  \:  \:  \: \:   \:  \:  \:  \:  \implies \sf 6y = 72 \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \implies \sf y =  \frac{72}{6}  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \implies \sf y = \orange{ \underline{ \boxed{ \bf 12}}}

\bf\therefore{{\underline{Required~answer}}:}

  • \sf{Length,~x=2y=2×12=\orange{\underline{\boxed{\bf 24m}}}}
  • \sf{Breadth,~y=\orange{\underline{\boxed{\bf 12m}}}}

\bf{{\underline{Verification}}:}

 \sf Perimeter \: of \: a \:rectangle = 2(l + b) \:  \:  \:  \:  \:  \:  \:  ~~~~~~~~~\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \: \\  \sf =  2(24 + 12) \\  \sf  =  2(36)  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \sf  =  \orange{ \underline{ \boxed{ \bf 72m}}} \:  \:  \:  \:  \:  \:  \:  \:

Similar questions