Math, asked by tusharlather3002, 1 year ago

the length of a rectangle is twice its breadth. if its diagonals is 4/5cm , find the perimeter of the rectangle

Answers

Answered by rajeev378
10
\huge\boxed{\texttt{\fcolorbox{red}{aqua}{Hey Mate!!!}}}
<b><i><font face=Copper black size=4 color=blue>
Here is your answer

Let breadth be x

So, length = 2x
Diagonal = \frac {4}{5}cm

 { (\frac{4}{5}) }^{2} = (2x) {}^{2} + (x) {}^{2} \\ \\ \frac{16}{25} = 4 {x}^{2} + {x}^{2} \\ \\ \frac{16}{25} = 5 {x}^{2} \\ \\ {x}^{2} = \frac{16}{25 \times 5} \\ \\ x = \frac{4}{5 \sqrt{5} }
So,

breadth = \frac{4}{5 \sqrt{5} } \\
Now,

length = \frac{4}{5 \sqrt{5} } \times 2 \\ \\ = \frac{8}{5 \sqrt{5} }
Perimeter = 2(l + b)

 = 2( \frac{8}{5 \sqrt{5}} + \frac{4}{5 \sqrt{5} } ) \\ \\ = 2 \times \frac{12}{5 \sqrt{5} } \\ \\ = \frac{24}{5 \sqrt{5} }
Therefore,

perimeter = \frac{24}{5 \sqrt{5} } \\

\large{\red{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\underline{\underline{\underline{Hope\:it\:helps\: you}}}}}}}}}}}}}}}

\huge\boxed{\texttt{\fcolorbox{Red}{yellow}{Be brainly!!!}}}

<marquee>
\huge\bf{\red{\huge{\bf{@.....rajeev378}}}}
Similar questions