Math, asked by trueelove46, 4 months ago

The length of a rectangle is twice its width. If the
length of its diagonal is 16^5 cm, find its area.​

Answers

Answered by Anonymous
16

Question :-

The length of a rectangle is twice its width. If the length of its diagonal is 16√5 cm, find its area.

Answer :-

Given :-

  • Length of rectangle is twice it's width
  • Length of diagnol = 16√5 cm

To Find :-

  • Area

Solution :-

Let the length be 2x

Breadth = x

\sf Diagnol = \sqrt{l^2 + b^2}

\sf 16\sqrt{5} = \sqrt{x^2 + (2x)^2}

\sf (16\sqrt{5})^2 = (\sqrt{x^2 + (2x)^2})^2

\sf 16^2 \times 5 = x^2 + 4x^2

\sf 1280 = 5x^2

\sf x^2 = \dfrac{1280}{5}

\sf x^2 = 256

\sf x = \sqrt{256}

\sf x = 16

  • Breadth = 16 cm
  • Length = 16 × 2 = 32 cm

Area of rectangle = length × breadth

⇒ Area = 16 × 32

⇒ Area = 512

Area of rectangle = 512 cm²

Answered by mathdude500
3

Given Question :-

  • The length of a rectangle is twice its width. If the length of its diagonal is 16 √(5) cm, find its area.

\large\underline\green{\bold{ \sf \: ANSWER}}

\begin{gathered}\begin{gathered}\bf \:Given - \begin{cases} &\sf{diagonal \: of \: rectangle = 16 \sqrt{5}  \: cm} \\ &\sf{length \:  =  \: 2(breadth)} \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf \: To \: find - \begin{cases} &\sf{Area_{(rectangle)}}  \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf  \: Formula \: Used - \begin{cases} &\rm{ {d}^{2}  =  {l}^{2}  +  {b}^{2} } \\ &\rm{Area_{(rectangle)} = l \times b} \end{cases}\end{gathered}\end{gathered}

where,

  • d represents diagonal of a rectangle.

  • l represents length of a rectangle.

  • b represents breadth of a rectangle.

\large\underline\purple{\bold{Solution :-  }}

Given that

  • Length of a rectangle = twice the Breadth of rectangle

So,

\begin{gathered}\begin{gathered}\bf  \: Let - \begin{cases} &\sf{breadth_{(rectangle)} (b)\:  =  \: x \: cm} \\ &\sf{length_{(rectangle)} (l)=  \: 2x \: cm} \end{cases}\end{gathered}\end{gathered}

Also,

Given that

 \bullet \:  \sf \: diagonal_{(rectangle)} (d)\:  = 16 \sqrt{5}  \: cm

Now,

  • Using the formula,

\rm :\implies\: \boxed{ \pink{ \bf \:  {d}^{2}  \:  =  \tt \:  {l}^{2}  +  {b}^{2} }}

\rm :\implies\: {(16 \sqrt{5} )}^{2}  =  {x}^{2}  +  {(2x)}^{2}

\rm :\implies\:256 \times 5 =  {x}^{2}  + 4 {x}^{2}

\rm :\implies\:256 \times 5 = 5 {x}^{2}

\rm :\implies\: {x}^{2}  = 256

\rm :\implies\: \boxed{ \pink{ \bf \: x \:  =  \tt \:16 }}

\begin{gathered}\begin{gathered}\bf  \: So - \begin{cases} &\sf{breadth_{(rectangle)} (b)\:  =  \: x \: = 16 \: cm} \\ &\sf{length_{(rectangle)} (l)=  \: 2x  \:  = 32\: cm} \end{cases}\end{gathered}\end{gathered}

Now,

  • Using the formula,

\rm :\implies\: \boxed{ \pink{ \bf \: Area_{(rectangle)} \:  =  \tt \: length \times breadth}}

\rm :\implies\:Area_{(rectangle)} = 32 \times 16

\rm :\implies\: \boxed{ \pink{ \bf \: Area_{(rectangle)} \:  =  \tt \:512 \:  {cm}^{2}  }}

Similar questions