Math, asked by santa19, 1 day ago

the length of a rectangular carton is twice the breadth and thrice the height .if the volume of the carton is 4500cm cube ,find its length ,breadth ,and height .






Drop thnx plz, will return for sure:-D​

Answers

Answered by jasminpaul8301
8

Answer:

According to question, length = 2b = 3h

2b = 3h b = 3h 2 2

Volume= 288 cm3 (3h) / 3h) (h) = 288 3^)(n)=

h3 = 64

h = 4 cm

:: Length: = 3x 4 = 12 cm Breadth = 3/₂ x 4 = 6 cm

Answered by Anonymous
56

Given :

  • Length of the rectangular carton is twice the breadth and thrice the height .
  • Its Volume is 4500 cm³ .

 \\ \\

To Find :

  • Find the Dimensions

 \\ \qquad{\rule{200pt}{2pt}}

SolutioN :

 \dag Formula Used :

  •  {\underline{\boxed{\pmb{\sf{ Volume{\small_{(Cuboid)}} = Length \times Width \times Height }}}}}

 \\ \\

 \dag According to the Question :

 \longmapsto Let the Length be y cm .So :

 \qquad \; {\pmb{\sf{ Length = y \; cm }}}

 \\

 \longmapsto Length is twice the Width .So :

 \qquad \; {\pmb{\sf{ Breadth = \dfrac{y}{2} \; cm }}}

 \\

 \longmapsto Length is thrice the Height .So :

 \qquad \; {\pmb{\sf{ Length = \dfrac{y}{3} \; cm }}}

 \\ \\

 \dag Calculating the Value of y :

 {\longmapsto{\qquad{\sf{ Volume = Length \times Width \times Height }}}} \\ \\ \\ \\ \ {\longmapsto{\qquad{\sf{ 4500 = \dfrac{y}{1} \times \dfrac{y}{2} \times \dfrac{y}{3} }}}} \\ \\ \\ \\ \ {\longmapsto{\qquad{\sf{ 4500 = \dfrac{y}{1} \times \dfrac{ {y}^{2} }{6} }}}} \\ \\ \\ \\ \ {\longmapsto{\qquad{\sf{ 4500 = \dfrac{ {y}^{3} }{6} }}}} \\ \\ \\ \\ \ {\longmapsto{\qquad{\sf{ 4500 \times 6 = {y}^{3} }}}} \\ \\ \\ \\ \ {\longmapsto{\qquad{\sf{ 27000 = {y}^{3} }}}} \\ \\ \\ \\ \ {\longmapsto{\qquad{\sf{ \sqrt{27000} = y }}}} \\ \\ \\ \\ \ {\longmapsto \; {\pmb{\underline{\boxed{\pink{\frak{ y = 30 }}}}}}}

 \\ \\

 \dag Calculating the Dimensions :

  • Length = y = 30 cm
  • Breadth = 30/2 = 15 cm
  • Height = 30/3 = 10 cm

 \\ \\

 \therefore \; Length of the Carton is 30 cm ,Breadth is 15 cm and the Height is 10 cm .

 \\ \qquad{\rule{200pt}{2pt}}

Similar questions