Math, asked by Anonymous, 6 months ago

The length of a rectangular feild is thirce of its breadth if the perimeter of the feild is 300m. then find the length and breadth of the field

Answers

Answered by Anonymous
21

\huge\tt{\bold{\underline{\underline{Question᎓}}}}

The length of a rectangular feild is thirce of its breadth if the perimeter of the feild is 300m. then find the length and breadth of the field

\huge\tt{\bold{\underline{\underline{Answer᎓}}}}

┏━━━━━━━━━━━━━━━━━━━━━━━┓

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ✍️

Let the breadth of the Rectangle be\bold{\red{ 'x'm}}

then ,length of the Rectangle be\bold{\red{ 3x}}

Given : Perimeter of the field is 300m

Formula:

\bold{\boxed{Perimeter \:of \:rectangle = 2(l + b)}}

 =  > 300 = 2(3x + x)

 =  > 300 = 8x

 =  > 8x = 300

 =  > x =  \frac{300}{8}  = 37.5

Hence,breadth of the Rectangle is \bold{\red{37.5m}}

Length of the Rectangle is 3x=3×37.5=\bold{\red{112.5m}}

let's check by putting values in the formula:

 \bold{=  > 2(l + b) = 300}

 \bold{=  > 2(112.5 + 37.5) = 300}

 \bold{=  > 2(150) = 300}

 \bold{=  > 300 = 300}

=>Look above image attached for figures of square, rectangular, triangle & circle .

\huge\mathcal{Learn \:more:}

\bold{\boxed{Area \:of\: rectangle = l \times b}}

\bold{\boxed{Area \:of\: square =  {(side)}^{2}}}

\bold{\boxed{Area\: of\: triangle =  \frac{1}{2} base \times height}}

\bold{\boxed{Area \:of \:circle = \pi {r}^{2} }}

┗━━━━━━━━━━━━━━━━━━━━━━━┛

Answered by Anonymous
1

\huge\tt{\bold{\underline{\underline{Question᎓}}}}

The length of a rectangular field is thrice of its breadth if the perimeter of the field is 300m. then find the length and breadth of the field

\huge\tt{\bold{\underline{\underline{Answer᎓}}}}

┏━━━━━━━━━━━━━━━━━━━━━━━┓

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ✍️

Let the breadth of the Rectangle be\bold{\red{ 'x'm}}

then ,length of the Rectangle be\bold{\red{ 3x}}

Given : Perimeter of the field is 300m

Formula:

\bold{\boxed{Perimeter \:of \:rectangle = 2(l + b)}}

= > 300 = 2(3x + x)

= > 300 = 8x

= > 8x = 300

= > x = \frac{300}{8} = 37.5

Hence,breadth of the Rectangle is \bold{\red{37.5m}}

Length of the Rectangle is 3x=3×37.5=\bold{\red{112.5m}}

let's check by putting values in the formula:

\implies\bold{ 2(l + b) = 300}

\implies\bold{2(112.5 + 37.5) = 300}

\implies\bold{ 2(150) = 300}

\implies\bold{ 300 = 300}

=>Look above image attached for figures of square, rectangular, triangle & circle .

\Large\mathscr\color{red}{LEARN\:MORE:-}

\boxed{\frak{Area \:of\: rectangle = l \times b}}

\boxed{\frak{Area \:of\: square = {(side)}^{2}}}

\boxed{\frak{Area\: of\: triangle = \frac{1}{2} base \times height}}

\boxed{\frak{Area \:of \:circle = \pi {r}^{2} }}

┗━━━━━━━━━━━━━━━━━━━━━━━┛

Similar questions