Math, asked by braibbbly, 4 months ago

The length of a rectangular field is 100 m. If the perimeter is 300 m, what is its breadth?

Answers

Answered by itzpriya22
14

\bf Given\begin{cases} & \sf{Length\:of\;rectangular\;field = \bf{100\;m}}  \\ & \sf{Perimeter\;of\;rectangular\;field = \bf{300\;m}}  \end{cases}\\ \\

To find:

  • Breadth of rectangular field?

⠀⠀⠀⠀_____________________________

Let breadth of rectangular field be x m.

⠀⠀⠀⠀

\dag\;{\underline{\frak{As\;we\;know\;that,}}}\\ \\

\star\;{\boxed{\sf{\pink{Perimeter_{\;(rectangle)} = 2(length + breadth)}}}}\\ \\

Therefore,

⠀⠀⠀⠀

{\underline{\sf{\bigstar\: According\:to\:the\:question\::}}}\\ \\

:\implies\sf 2(100 + x) = 300\\ \\

:\implies\sf (100 + x) = \cancel{\dfrac{300}{2}}\\ \\

:\implies\sf 100 + x = 150\\ \\

:\implies\sf x = 150 - 100\\ \\

:\implies{\underline{\boxed{\sf{\purple{x = 50}}}}}\;\bigstar\\ \\

\therefore\;{\underline{\sf{Breadth\:of\;rectangular\;field\;is\; {\textsf{\textbf{50\;m}}}.}}}

⠀⠀⠀⠀_____________________________

\qquad\qquad\boxed{\bf{\mid{\overline{\underline{\pink{\bigstar\: More\:to\:know :}}}}}\mid}\\\\

Area of rectangle = length × breadth

Diagonal of rectangle = √(length)² + (breadth)²

Area of square = side × side

Perimeter of square = 4 × side

Diagonal of square = √2 × side

Answered by shaktisrivastava1234
10

 \huge{ \boxed{ \frak {Answer}}}

 \large  \underline{\underline {\frak{ \color{red}Given::}}}

: \mapsto \sf{Length \:  of  \: rectangle=100m}

{: \mapsto \sf{Perimeter \:  of  \: rectangle=300m}}

 \large  \underline{\underline {\frak{ \color{blue}To \:  find::}}}

 \leadsto \sf{Breadth  \: of  \: rectangle.}

 \large  \underline{\underline {\frak{ \color{indigo}Formula  \: required::}}}

 \maltese{ \fbox{Perimeter \: of \: rectangle = 2( Length  + Breadth)}} \maltese

 \large  \underline{\underline {\frak{ \color{ind}According \:  to  \: Question::}}}

{:  \implies{ \sf{Perimeter \: of \: rectangle = 2( Length  + Breadth)}}}

{:  \implies{ \sf{300m = 2( 150m  + Breadth)}}}

{:  \implies{ \sf{ \frac{300}{2}m =  100m  + Breadth}}}

{:  \implies{ \sf{150m =  100m  + Breadth}}}

{:  \implies{ \sf{Breadth = 150m - 100m}}}

{:  \implies{ \sf{Breadth = 50m}}}

 \large  \underline{\underline {\bf{ \color{cyan}Hence, }}}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \star{\underline{ \fbox{ \sf{Breadth = 50m}}}}

 \large  \underline{\underline {\frak{ \color{peru}Learn \:  more  \: about \:  rectangle::}}}

{ \boxed{ \begin{gathered} \begin{array}{ |c|c|  }  \hline \sf Perimeter  \: of \: rectangle & \sf2(length + breadth) \\  \hline \sf Area \: of \: rectangle& \sf length \times breadth \\ \hline \sf Length \: of \: rectangle&  \sf\frac{Area}{Breadth} \\  \hline \sf Breadth \: of \: rectangle &  \sf\frac{Area }{Length}  \\  \end{array} \end{gathered}}}

Similar questions