Math, asked by JazzFazz, 7 months ago

The length of a rectangular field is 8 meters less than twice its breadth. If
the perimeter of the rectangular field is 56 meters, find its length and breadth?
rianale are each s motore long the​

Answers

Answered by prabhukiransurisetti
6

Answer:

The length of the rectangle is 16 meters and the breadth is 12 meters.

Step-by-step explanation:

Let the breadth of the rectangle(b) be 'x'

As given, the length of the rectangle(l) will be 2x-8.

The perimeter of the rectangle is 56 meters.

2(l+b) = 56

2(2x-8+x) = 56

3x-8 = 56/2

3x-8 = 28

3x = 28+8 = 36

x = 36/3 = 12.

The breadth of the rectangle is 12 meters.

The length of the rectangle becomes 16 meters.

= 2(12)-8

= 24-8 = 16.

Hope this helps you..

Answered by Truebrainlian9899
33

☞︎︎︎ Given :

\:  \:  \:  \:  \:

★ Length of rectangle = 2 × breadth - 8m

\:  \:  \:  \:  \:

★ Perimeter of rectangular feild = 56m

\:  \:  \:  \:  \:

☞︎︎︎ To Find :

\:  \:  \:  \:  \:

★ Length of ractangle

\:  \:  \:  \:  \:

★ Breadth of rectangle

\:  \:  \:  \:  \:

_____________________________________________

\:  \:  \:  \:  \:

☞︎︎︎ Solution :

\:  \:  \:  \:  \:

☕︎ Let the breadth of rectangle be = x

\:  \:  \:  \:  \:

\therefore length = 2 × x - 8m = 2x - 8m

\:  \:  \:  \:  \:

\:  \:  \:  \:  \: ❥︎ Pereter of rectangle = 56m

\:  \:  \:  \:  \:

  \looparrowright \boxed{ \mathtt {\: perimeter = 2 \times (l + b)}}

\:  \:  \:  \:  \:

_____________________________________________

\:  \:  \:  \:  \:

☞︎︎︎ On solving :

\:  \:  \:  \:  \:

➪ 56 = 2 × ( 2x - 8m + x )

\:  \:  \:  \:  \:

➪ 56 = 2 × ( 3x - 8 )

\:  \:  \:  \:  \:

☞︎︎︎ On Transposing the terms :-

\:  \:  \:  \:  \:

 \implies \mathtt{ \:  \dfrac{56}{2} =  3x - 8}

\:  \:  \:  \:  \:

 \implies \mathtt{ \:  28 =  3 x - 8}

\:  \:  \:  \:  \:

 \implies \mathtt{ \:  28  + 8 \:  =   3 x}

\:  \:  \:  \:  \:

 \implies \mathtt{ \:  36\:  =   3 x}

\:  \:  \:  \:  \:

 \implies \mathtt{ \:   \dfrac{36}{3} \:  =    \: x}

\:  \:  \:  \:  \:

 \large \boxed{ \boxed{ \mathtt {\therefore \: x = 12}}}

\:  \:  \:  \:  \:

_____________________________________________

\:  \:  \:  \:  \:

☕︎ Hence,

\:  \:  \:  \:  \:

☞︎︎︎ breadth of rectangle = x = 12m

\:  \:  \:  \:  \:

☞︎︎︎ Length = 2x - 8m

\:  \:  \:  \:  \:

➪ 2 × 12 -8

\:  \:  \:  \:  \:

➪ 24 - 8

\:  \:  \:  \:  \:

= 16

\:  \:  \:  \:  \:

★ Length = 16m

\:  \:  \:  \:  \:

_____________________________________________

Similar questions