The length of a rectangular floor of 5 metal longer than with it is its parameter of the floor is 86 find the the democracies of the floor
Answers
Answer:
Answer:
Given: length = width+5
Perimeter = 86m
To find: Dimensions of the floor
Step-by-step explanation:
Let length be 'l' and width be 'w'
According to the question,
l=w+5
Perimeter =2(length +breadth)
86=2(w+5+w) (we are writing length as w+5)
86=2(2w+5)
86/2 = 2w+5
43 = 2w+5
43-5 = 2w
38= 2w
38/2 =w
19= w.
Length =w+5
19+5
24.
Therefore, length is 24m and breadth or width is 19m
Perimeterofrectangle=2(length+breadth)
According to question ,
\begin{gathered}: \implies{ \sf{Perimeter = 86}} \\ \\ : \implies{ \sf{2 [(x + 5) + x ] = 86}} \\ \\: \implies{ \sf{2 (x + 5 + x ) = 86}} \\ \\ : \implies{ \sf{2 (2x + 5)= 86}} \\ \\ : \implies{ \sf{4x + 10= 86 }} \\ \\ : \implies{ \sf{4x = 86 - 10}} \\ \\ : \implies{ \sf{4x = 76 }} \\ \\ : \implies{ \sf{x = \frac{76}{4} }} \\ \\ : \implies{ \boxed{ \tt{x = 19}}}\end{gathered}
:⟹Perimeter=86
:⟹2[(x+5)+x]=86
:⟹2(x+5+x)=86
:⟹2(2x+5)=86
:⟹4x+10=86
:⟹4x=86−10
:⟹4x=76
:⟹x=
4
76
:⟹
x=19
∴The dimension soft here rectangular floor are19m and(19+5)m=24m.