Math, asked by noobinmath, 7 months ago

the length of a rectangular lot is 6 less than twice its width if the area is 45 square cm what is the length and the width of the rectangle​

Answers

Answered by mysticd
0

 \underline{\pink{ Dimensions \: of \: a \: rectangular \: plot : }}

 Let \: the \: width (w)  = x \: cm

 Length (l) = (2x - 6 ) \: cm

 Area \: of \: the \: plot (A) = 45 \: cm^{2} \:(given)

 \implies l \times w = 45

 \implies (2x-6)\times x - 45 = 0

 \implies 2x^{2} - 6x - 45 = 0

 Compare \: this \:with \: ax^{2} +bx+c = 0 ,\\we \:get

 a = 2 , b = -6 , c = -45

 Discriminant (D) = b^{2} - 4ac \\= (-6)-4\times 2 \times (-45) \\= 36 + 360 \\= 396

/* Using Quadratic formula */

 x = \frac{ - b \pm \sqrt{D}}{2a }

 =\frac{ -(-6) \pm \sqrt{396}}{2\times 2 } \\= \frac{6 \pm 6 \sqrt{11}}{4}\\= \frac{3\pm 3\sqrt{11}}{2}

Therefore.,

 Breadth (w) = x = \frac{3+3\sqrt{11}}{2} \: cm

•••♪

Similar questions