Math, asked by anthatikrishnaveni97, 5 months ago

The length of a rectangular park is 700 m and its breadth is 300 m. Two crossroads, each
of width 10 m, cut the centre of a rectangular park and are parallel to its sides. Find the
area of the roads. Also, find the area of the park excluding the area of the crossroads.

Answers

Answered by MrAnonymous412
28

 \\  ☆ \: \pink{ \sf \large \underline{ \: Required  \: Question:- }} \\  \\

The length of a rectangular park is 700 m and its breadth is 300 m. Two crossroads, each of width 10 m, cut the centre of a rectangular park and are parallel to its sides. Find the area of the roads. Also, find the area of the park excluding the area of the crossroads.

 \\  ☆ \: \pink{ \sf \large \underline{ \: SolutiOn :- }} \\  \\

★ Here we have given that , \rm { PQ = 10cm}

  \\ \sf \: PS = 300m, \: EH = 10m,\: EF = 700m,\: KL = 10m \\  \\

  \\ \sf \green {\: Area \:  of  \: roads  \: = Area  \: of \:  PQRS + Area  \: of  \: EFGH - Area  \: of  \:  \: KLMN  \:}  \\  \\

 \\  \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  : \implies \: PS \times PQ + EF \times EH - KL \times KN \\  \\

  \\ \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  :  \implies \: (300 \times 10) + (700 \times 10) - (10 \times 0) \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  :  \implies \sf \: 3000 + 7000 - 100 \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  :  \sf \implies \boxed{  \underline\frak \pink{9900m^{2} }} \\  \\

Area of roads in Hectors ,

We know that,    \sf 1 {m}^{2}  =  \frac{1}{10000} \:  hectors  \\

 \\  \sf \:  \:  \:  \:  \therefore \:9900 {m}^{2} =  \frac{9900}{10000}   =  \bold{0.99 \: hectares}  \\  \\

 \\  \sf \: Now, \\ \\   \sf \:  \:  \:  \:  \:  \:  \:  \green{ Area  \: of  \: part \:  excluding \:  cross  \: roads \: =  \: Area \:  of \:  part \:  -  \: Area \:  of  \: Road } \\  \\

 \\  \sf \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  :  \implies \: (AB \times AD) - 9900 \\  \\

 \\  \sf \:  \: \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:   \:  \: \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  :  \implies \: (700\times 300) - 9900 \\  \\

 \\  \sf \:   \:   \:  \: \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  :  \implies \: 210000 - 9900 \\  \\

 \\  \sf \:   \:   \:  \: \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  :  \implies \boxed{ \underline \frak \blue{ 200100  \: {m}^{2}}} \\  \\

 \\  \sf \:   \:  \:   \:   \:  \: \:  \:  \: \:  \: \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  :  \implies   \frac{200100 \:  {m}^{2} }{10000}  \: hectares\\  \\

 \\  \sf \:   \:   \:  \: \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  :  \implies \boxed{ \underline \frak \pink{ 20.01 \: hectares}} \\  \\

 \\  \sf \underline { \:  \:  \: Area  \: of  \: part \:  excluding \:  cross  \: roads \: \: is \underline \bold{\: 20.01 \: hectares \: } \:  \: }. \\  \\

Attachments:

mairy40: hii
mairy40: hello
mairy40: what are you doing
Anonymous: hii
Anonymous: I was studying
Similar questions