Math, asked by Phhy, 18 hours ago

The length of a rectangular piece of land is 15m and it's 8m. Find the length of its diagonal?​

Answers

Answered by Anonymous
127

 \star \; {\underline{\boxed{\pmb{\orange{\sf{ \; Given \; :- }}}}}}

  • Length of Rectangle = 15 m
  • Breadth of Rectangle = 8 m

 \\ \\

 \star \; {\underline{\boxed{\pmb{\color{darkblue}{\sf{ \; To \; Find \; :- }}}}}}

  • Diagonal of Rectangle = ?

 \\ \qquad{\rule{200pt}{2pt}}

 \star \; {\underline{\boxed{\pmb{\red{\sf{ \; SolutioN \; :- }}}}}}

 \; \dag \; {\pmb {\underline{\underline{\sf{ \:  Formula \; Used \; :- }}}}}

 \qquad \; \; {\green{\bigstar \; \; {\purple{\underbrace{\underline{\pink{\sf{ {Diagonal}^{2} = {Length}^{2} + {Breadth}^{2} }}}}}}}}

 \\ \\

  \; \dag \; {\pmb {\underline{\underline{\sf{ \:  Calculation \; :- }}}}}

 \begin{gathered} \qquad \; \longrightarrow \; \; \sf { {Diagonal}^{2} = {Length}^{2} + {Breadth}^{2} } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \longrightarrow \; \; \sf { Diagonal = \sqrt{ { \bigg( Length \bigg) }^{2} + { \bigg( Breadth \bigg)}^{2} } } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \longrightarrow \; \; \sf { Diagonal = \sqrt{ { \bigg( 15 \bigg) }^{2} + { \bigg( 8 \bigg)}^{2} } } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \longrightarrow \; \; \sf { Diagonal = \sqrt{ 225 + 64 } } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \longrightarrow \; \; \sf { Diagonal = \sqrt{ 289 } } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \longrightarrow \; \; {\underline{\boxed{\purple{\pmb{\sf { Diagonal = 17 \; cm }}}}}} \; \red\bigstar \\\ \\ \\ \end{gathered}

 \\ \\

 \therefore \; Diagonal of the Rectangle is 17 cm .

 \\ \qquad{\rule{200pt}{2pt}}

Answered by Anonymous
60

 \sf \bigstar \underline{\: Information  \: provided  \: with  \: us :}

⭐ The length of rectangular piece of land is

  • ➡ 15 m

⭐ The breadth of rectangular piece of land is

  • ➡ 8 m

 \sf \bigstar \underline{ \: What  \: we \:  have  \: to  \: calculate :}

  • ⭐ ➡ The length of its diagonal

 \sf \bigstar \underline{  \: Assumption :}

➡ Let ABCD is rectangular piece of land of given length and breadth .Since ABCD is right angle triangle So we know that each angle of reactangle is 90 °

➡ Consider the diagonal be d m

\sf \bigstar \underline{  \: Formula  \: used :}

➡ The formula to calculate length of diagonals of a rectangle are as follows,

 \rm \implies \: d =  \sqrt{ {l}^{2}  + {w}^{2}  }

where,

  • l = length of the rectangle

  • w = width of the rectangle

\sf \bigstar \underline{  \: Now :}

⭐ Note :-

➡ d = diagonal = AC = ?

➡ l = length = BC = 15 m

➡w = width = AB = 8 m

⭐ Therefore by using Pythagoras theorem

 \rm \implies \:  {d}^{2}  =  {l}^{2}  +  {w}^{2}

 \rm \implies \: A {C}^{2}  = B {C}^{2}  + A {B}^{2}

➡ Now by Taking square root on both sides,

\rm \implies \: AC =  \sqrt{ {l}^{2}  + {w}^{2}  }

 \rm \implies \: AC  = \sqrt{B {C}^{2}  + A {B}^{2}}

➡ Here by substituting the given values in above diagonal of a rectangle formula we get :-

 \rm \implies \: AC =  \sqrt{ {15}^{2}  +  {8}^{2} }

\rm \implies \: AC=  \sqrt{ 225  +  64}

\rm \implies \: AC =  \sqrt{ 289 }

 \rm \implies \: AC= 17 \: m

\sf \bigstar \underline{  \: Therefore :}

⭐ The length of diagonal

  • ➡ AC = 17 m
Attachments:
Similar questions