Math, asked by iamchampion3, 2 months ago

The length of a rectangular plot of area 65 1/3 metre square is 12 1/4 metre. What is the width of the plot.​

Answers

Answered by BrainlyTwinklingstar
2

Given :

Area of rectangular plot : 65⅓ metres

Length of the rectangle : 12¼ metres

To find :

The breadth of the rectangular field.

Solution :

Let's find the breadth of the rectangle by the formula of area of rectangle.

Breadth of the rectangle :

{\sf \dashrightarrow {Area}_{(Rectangle)} = Length \times Breadth}

{\sf \dashrightarrow 65 \dfrac{1}{3} = 12 \dfrac{1}{4} \times B}

{\sf \dashrightarrow \dfrac{196}{3} = \dfrac{49}{4} \times B}

{\sf \dashrightarrow B = \dfrac{196}{3} \div \dfrac{49}{4}}

{\sf \dashrightarrow B = \dfrac{196}{3} \times \dfrac{4}{49}}

{\sf \dashrightarrow B = \dfrac{4}{3} \times \dfrac{4}{1}}

{\sf \dashrightarrow B = \dfrac{4 \times 4}{3 \times 1}}

{\sf \dashrightarrow B = \dfrac{16}{3}}

Hence, the breadth of the rectangle is \sf \dfrac{16}{3} \: metres.

Verification

{\sf \dashrightarrow Area = Length \times Breadth}

{\sf \dashrightarrow \dfrac{196}{3} = \dfrac{49}{4} \times \dfrac{16}{3}}

{\sf \dashrightarrow \dfrac{196}{3} = \dfrac{49}{1} \times \dfrac{4}{3}}

{\sf \dashrightarrow \dfrac{196}{3} = \dfrac{196}{3}}

{\sf \dashrightarrow LHS = RHS}

Similar questions