Math, asked by SJROCKS, 10 months ago

the length of a rectangular plot of land is twice it's breadth. If the perimeter of the land be 100 meters then find its area​

Answers

Answered by Anonymous
75

Answer:

 \boxed{\sf Area \ of \ rectangular \ plot =  \frac{5000}{9}  \:  {m}^{2}}

Given:

Length of rectangular plot = Twice breadth of rectangular plot

Perimeter of rectangular plot = 100 m

To Find:

Area of rectangular plot

Step-by-step explanation:

Let breadth of rectangular plot be 'b' m

So,

Length of rectangular plot = (2b) m

 \sf \implies Perimeter  \: of \:  rectangular  \: plot =2(length + breadth) \\  \\ \sf \implies 100  =  2(2b + b) \\  \\ \sf \implies 100 = 2(3b) \\  \\ \sf \implies 100 = 6b \\  \\ \sf \implies 6b = 100 \\  \\ \sf \implies b =  \frac{100}{6}  \\  \\ \sf \implies b =  \frac{50}{3}  \: m

 \sf Therefore, \\ \sf Length  \: of \:  rectangular  \: plot = 2b \\  \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   = 2 \times  \frac{50}{3}  \\  \\  \sf\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  \frac{100}{3}  \: m \\  \\  \sf Breadth  \: of \:  rectangular  \: plot = b \\  \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: =  \frac{50}{3}  \: m

So,

 \sf Area  \: of  \: rectangular  \: plot = Length \times Breadth \\  \\  \sf =  \frac{100}{3}  \times  \frac{50}{3}  \\  \\  \sf =  \frac{5000}{9}  \:  {m}^{2}

Answered by Divyansh50800850
11

\huge\star\bold\red{ANSWER}

\bold\red{Given:-} L=2B

perimeter=>100m

\bold\red{To} \bold\red{Find:-} Area=?

\bold\red{Solution:-}

As we know, perimeter=2(L+B)

Now, 2(L+B)= 100cm

=>2(2B+B)=100

=>2(3B)=100

=>6B=100

=>B=\frac{100}{6}

=>B=\frac{50}{3}m

then, L=2B=2×\frac{50}{3}=\frac{100}{3}m

Now, As we know Area=L×B

=>\frac{100}{3}×\frac{50}{3}

=> \frac{5000}{9}

=> 555.55555......(556m²).....ans.....

HOPE THIS HELPS YOU

MARK IT AS BRAINILIST

THANK U

Similar questions