Physics, asked by Lalhlimpuii2868, 8 months ago

The length of a rod increases from 50 cm to 50.12 cm, when its temperature is increased from 12 °C to 212 °C. Calculate its coefficient of liner expansion.

Answers

Answered by shadowsabers03
8

Initial length of rod, \sf{L_1=50\ cm}

Final length of rod, \sf{L_2=50.12\ cm}

Change in length of rod,

\sf{\longrightarrow \Delta L=L_2-L_1}

\sf{\longrightarrow \Delta L=50.12\ cm-50\ cm}

\sf{\longrightarrow \Delta L=0.12\ cm}

Initial temperature, \sf{T_1=12^oC}

Final temperature, \sf{T_2=212^oC}

Change in temperature,

\sf{\longrightarrow \Delta T=T_2-T_1}

\sf{\longrightarrow \Delta T=212^oC-12^oC}

\sf{\longrightarrow \Delta T=200^oC}

or,

\sf{\longrightarrow \Delta T=200\ K}

(°C and K are considered same in case of temperature difference.)

We know change in length is given by,

\sf{\longrightarrow \Delta L=L_1\alpha\,\Delta T}

Then coefficient of linear expansion is,

\sf{\longrightarrow \alpha=\dfrac{\Delta L}{L_1\ \Delta T}}

\sf{\longrightarrow \alpha=\dfrac{0.12}{50\times200}}

\sf{\longrightarrow\underline{\underline{\alpha=1.2\times10^{-5}\ K^{-1}}}}

Similar questions